The Congestion Time Limit Distribution for a Fully Available Group of Trunks
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 246-252
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A fully available group of $n$ trunks is considered under the assumption that a Poisson stream of calls with constant intensity $\lambda$ is serviced. The complete availability group is a loss-system. The holding time is independent of the stream of calls and has an exponential distribution with a mean holding time equal to 1.
Let $\xi(t)=\{\xi_0(t),\xi_1(t),\dots,\xi_n(t)\}$ be a random vector, where $\xi_\alpha(t)$ is the life time of the system in its $\alpha$ state, $\alpha=0,1,\dots,n$, during the time interval $[0,t]$. The second moments of the random vector $\xi(t)$ are determined as rational functions of $\lambda$. These results make it possible to apply integral and local limit theorems for practical purposes.
			
            
            
            
          
        
      @article{TVP_1960_5_2_a9,
     author = {G. P. Basharin},
     title = {The {Congestion} {Time} {Limit} {Distribution} for a {Fully} {Available} {Group} of {Trunks}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {246--252},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a9/}
}
                      
                      
                    G. P. Basharin. The Congestion Time Limit Distribution for a Fully Available Group of Trunks. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 246-252. http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a9/
