On Strong Mixing Conditions for Stationary Gaussian Processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 222-227
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper considers conditions, which guarantee strong mixing of stationary random Gaussian process $\xi (t)$.
It is proved, for example, that if the spectral density $f(\lambda)$ of the process $\xi(t)$ is continuous and positive (parameter $t$ is discrete) or $f(\lambda )$ is positive and uniformly continuous, and for large $\lambda$ $$\frac{m}{\lambda^k}\leq f(\lambda)\leq\frac{M}{\lambda^{k-1}}$$ (parameter $t$ is continuous), then strong mixing takes place.
			
            
            
            
          
        
      @article{TVP_1960_5_2_a4,
     author = {A. N. Kolmogorov and Yu. A. Rozanov},
     title = {On {Strong} {Mixing} {Conditions} for {Stationary} {Gaussian} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {222--227},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a4/}
}
                      
                      
                    TY - JOUR AU - A. N. Kolmogorov AU - Yu. A. Rozanov TI - On Strong Mixing Conditions for Stationary Gaussian Processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1960 SP - 222 EP - 227 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a4/ LA - ru ID - TVP_1960_5_2_a4 ER -
A. N. Kolmogorov; Yu. A. Rozanov. On Strong Mixing Conditions for Stationary Gaussian Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 222-227. http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a4/
