On Strong Mixing Conditions for Stationary Gaussian Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 222-227

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers conditions, which guarantee strong mixing of stationary random Gaussian process $\xi (t)$. It is proved, for example, that if the spectral density $f(\lambda)$ of the process $\xi(t)$ is continuous and positive (parameter $t$ is discrete) or $f(\lambda )$ is positive and uniformly continuous, and for large $\lambda$ $$\frac{m}{\lambda^k}\leq f(\lambda)\leq\frac{M}{\lambda^{k-1}}$$ (parameter $t$ is continuous), then strong mixing takes place.
@article{TVP_1960_5_2_a4,
     author = {A. N. Kolmogorov and Yu. A. Rozanov},
     title = {On {Strong} {Mixing} {Conditions} for {Stationary} {Gaussian} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {222--227},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a4/}
}
TY  - JOUR
AU  - A. N. Kolmogorov
AU  - Yu. A. Rozanov
TI  - On Strong Mixing Conditions for Stationary Gaussian Processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1960
SP  - 222
EP  - 227
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a4/
LA  - ru
ID  - TVP_1960_5_2_a4
ER  - 
%0 Journal Article
%A A. N. Kolmogorov
%A Yu. A. Rozanov
%T On Strong Mixing Conditions for Stationary Gaussian Processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1960
%P 222-227
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a4/
%G ru
%F TVP_1960_5_2_a4
A. N. Kolmogorov; Yu. A. Rozanov. On Strong Mixing Conditions for Stationary Gaussian Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 222-227. http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a4/