Ergodic Properties of Recurrent Diffusion Processes and Stabilization of the Solution to the Cauchy Problem for Parabolic Equations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 196-214
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the existence of a unique invariant measure for Markov processes satisfying the conditions 
$1^\circ-9^\circ$ is proved. This result is applied to obtain the asymptotic properties of the solution to the Cauchy problem for the parabolic equation $\partial u/\partial t=Lu$ when $t\to+\infty$. It is established that these properties depend on properties of the solution to the extremal Dirichlet problem for the equations $Lu=0$ and $Lu=-1$. The sufficient conditions for them expressed in terms of the behaviour of the coefficients in the equation 
$Lu=\partial u/\partial t$ are given in the appendix.
			
            
            
            
          
        
      @article{TVP_1960_5_2_a2,
     author = {R. Z. Khas'minskii},
     title = {Ergodic {Properties} of {Recurrent} {Diffusion} {Processes} and {Stabilization} of the {Solution} to the {Cauchy} {Problem} for {Parabolic} {Equations}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {196--214},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a2/}
}
                      
                      
                    TY - JOUR AU - R. Z. Khas'minskii TI - Ergodic Properties of Recurrent Diffusion Processes and Stabilization of the Solution to the Cauchy Problem for Parabolic Equations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1960 SP - 196 EP - 214 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a2/ LA - ru ID - TVP_1960_5_2_a2 ER -
%0 Journal Article %A R. Z. Khas'minskii %T Ergodic Properties of Recurrent Diffusion Processes and Stabilization of the Solution to the Cauchy Problem for Parabolic Equations %J Teoriâ veroâtnostej i ee primeneniâ %D 1960 %P 196-214 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a2/ %G ru %F TVP_1960_5_2_a2
R. Z. Khas'minskii. Ergodic Properties of Recurrent Diffusion Processes and Stabilization of the Solution to the Cauchy Problem for Parabolic Equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 196-214. http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a2/
