Limit Approach under the Signs of Information and Entropy
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 29-37
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main result of this paper amounts to the following statement: If a sequence of pairs of random variables 
$(\xi_n,\eta_n)$ is given and this sequence converges in variation to a pair of random variables $(\xi,\eta)$, then $\lim _{n\to\infty}I(\xi_n,\eta_n)=I(\xi,\eta)(I(\xi,\eta)$ is the information of the pair $(\xi,\eta)$ if and only if the sequence of corresponding information densities is uniformly integrable. A similar result is proved for entropies and for a new concept in information within a probability $E$ of events. Conditions are found for the convergence of these quantities.
			
            
            
            
          
        
      @article{TVP_1960_5_1_a2,
     author = {R. L. Dobrushin},
     title = {Limit {Approach} under the {Signs} of {Information} and {Entropy}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a2/}
}
                      
                      
                    R. L. Dobrushin. Limit Approach under the Signs of Information and Entropy. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 29-37. http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a2/
