On the Estimation of the Mean in Stationary Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 451-453 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variance of the estimate $$m_{N+1}=\frac1{N+1}\sum_{i=0}^N\xi\left(\frac{i}{N}\cdot T\right)$$ of a mean of a stationary process $\xi(t)$ is shown to attain its minimum value for some finite $N$.
@article{TVP_1959_4_4_a7,
     author = {S. Ya. Vilenkin},
     title = {On the {Estimation} of the {Mean} in {Stationary} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {451--453},
     year = {1959},
     volume = {4},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a7/}
}
TY  - JOUR
AU  - S. Ya. Vilenkin
TI  - On the Estimation of the Mean in Stationary Processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1959
SP  - 451
EP  - 453
VL  - 4
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a7/
LA  - ru
ID  - TVP_1959_4_4_a7
ER  - 
%0 Journal Article
%A S. Ya. Vilenkin
%T On the Estimation of the Mean in Stationary Processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1959
%P 451-453
%V 4
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a7/
%G ru
%F TVP_1959_4_4_a7
S. Ya. Vilenkin. On the Estimation of the Mean in Stationary Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 451-453. http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a7/