Some Remarks on Goncharov’s Paper from the Domain of Combinatorics
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 445-450
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This note contains some results on the asymptotic distribution of the random vector $(\nu_1,\nu_2,\dots,\nu _{k- 1},\nu_k)$, where $\nu_1,\nu_2,\dots,\nu _{k-1},\nu_k$ are the numbers of $A$-series of lengths $1,2,\dots,k-1$ greater or equal to $k$, respectively, in the simple homogeneous Markov chain with two states $A$ and $B$. The asymptotic distribution of the above-mentioned vector (when appropriately formed) is shown to be multivariate normal with the parameters of the distribution calculated.
Possible extensions for a number of states greater than two are also discussed.
			
            
            
            
          
        
      @article{TVP_1959_4_4_a6,
     author = {V. I. Babkin and P. F. Belyaev and Yu. I. Maksimov},
     title = {Some {Remarks} on {Goncharov{\textquoteright}s} {Paper} from the {Domain} of {Combinatorics}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {445--450},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1959},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a6/}
}
                      
                      
                    TY - JOUR AU - V. I. Babkin AU - P. F. Belyaev AU - Yu. I. Maksimov TI - Some Remarks on Goncharov’s Paper from the Domain of Combinatorics JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1959 SP - 445 EP - 450 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a6/ LA - ru ID - TVP_1959_4_4_a6 ER -
V. I. Babkin; P. F. Belyaev; Yu. I. Maksimov. Some Remarks on Goncharov’s Paper from the Domain of Combinatorics. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 445-450. http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a6/
