Analytic Random Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 437-444
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to investigating the so-called analytic random processes. Random process $\xi(t)$ is called analytic in a region $D$ if almost all its sample functions are analytic and possess an analytic continuation in the region $D$. Analyticity of the covariance function $B(t,s)=\mathbf M\xi(t)\xi (s)$ in the neighborhood of $(t_0,t_0)$ is a sufficient condition for analyticity of $\xi (t)$ in the neighborhood of $t_0$. For Gaussian processes, this condition is also necessary. Some other problems connected with analytic processes are also investigated.
@article{TVP_1959_4_4_a5,
author = {Yu. K. Belyaev},
title = {Analytic {Random} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {437--444},
publisher = {mathdoc},
volume = {4},
number = {4},
year = {1959},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a5/}
}
Yu. K. Belyaev. Analytic Random Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 437-444. http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a5/