Analytic Random Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 437-444

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to investigating the so-called analytic random processes. Random process $\xi(t)$ is called analytic in a region $D$ if almost all its sample functions are analytic and possess an analytic continuation in the region $D$. Analyticity of the covariance function $B(t,s)=\mathbf M\xi(t)\xi (s)$ in the neighborhood of $(t_0,t_0)$ is a sufficient condition for analyticity of $\xi (t)$ in the neighborhood of $t_0$. For Gaussian processes, this condition is also necessary. Some other problems connected with analytic processes are also investigated.
@article{TVP_1959_4_4_a5,
     author = {Yu. K. Belyaev},
     title = {Analytic {Random} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {437--444},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1959},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a5/}
}
TY  - JOUR
AU  - Yu. K. Belyaev
TI  - Analytic Random Processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1959
SP  - 437
EP  - 444
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a5/
LA  - ru
ID  - TVP_1959_4_4_a5
ER  - 
%0 Journal Article
%A Yu. K. Belyaev
%T Analytic Random Processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1959
%P 437-444
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a5/
%G ru
%F TVP_1959_4_4_a5
Yu. K. Belyaev. Analytic Random Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 437-444. http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a5/