Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 424-432
Cet article a éte moissonné depuis la source Math-Net.Ru
It has been shown that the probability density for the continuous random process of the resultant of independent values which are summed up according to the linear-fractional law satisfies the diffusion equation in the Lobachevsky plane. Green’s function of the diffusion equation, which apparently is a new distribution, has been found.
@article{TVP_1959_4_4_a3,
author = {M. E. Gertsenshtein and V. B. Vasil'ev (Vasilyev)},
title = {Waveguides with {Random} {Inhomogeneities} and {Brownian} {Motion} {In} the {Lobachevsky} {Plane}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {424--432},
year = {1959},
volume = {4},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a3/}
}
TY - JOUR AU - M. E. Gertsenshtein AU - V. B. Vasil'ev (Vasilyev) TI - Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1959 SP - 424 EP - 432 VL - 4 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a3/ LA - ru ID - TVP_1959_4_4_a3 ER -
%0 Journal Article %A M. E. Gertsenshtein %A V. B. Vasil'ev (Vasilyev) %T Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane %J Teoriâ veroâtnostej i ee primeneniâ %D 1959 %P 424-432 %V 4 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a3/ %G ru %F TVP_1959_4_4_a3
M. E. Gertsenshtein; V. B. Vasil'ev (Vasilyev). Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 424-432. http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a3/