Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 424-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has been shown that the probability density for the continuous random process of the resultant of independent values which are summed up according to the linear-fractional law satisfies the diffusion equation in the Lobachevsky plane. Green’s function of the diffusion equation, which apparently is a new distribution, has been found.
@article{TVP_1959_4_4_a3,
     author = {M. E. Gertsenshtein and V. B. Vasil'ev (Vasilyev)},
     title = {Waveguides with {Random} {Inhomogeneities} and {Brownian} {Motion} {In} the {Lobachevsky} {Plane}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {424--432},
     year = {1959},
     volume = {4},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a3/}
}
TY  - JOUR
AU  - M. E. Gertsenshtein
AU  - V. B. Vasil'ev (Vasilyev)
TI  - Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1959
SP  - 424
EP  - 432
VL  - 4
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a3/
LA  - ru
ID  - TVP_1959_4_4_a3
ER  - 
%0 Journal Article
%A M. E. Gertsenshtein
%A V. B. Vasil'ev (Vasilyev)
%T Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1959
%P 424-432
%V 4
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a3/
%G ru
%F TVP_1959_4_4_a3
M. E. Gertsenshtein; V. B. Vasil'ev (Vasilyev). Waveguides with Random Inhomogeneities and Brownian Motion In the Lobachevsky Plane. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 424-432. http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a3/