On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 3, pp. 361-364
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The mean value and variance are computed for a statistical estimate for the entropy of a sequence of mutually independent random variables having a similar distribution. The estimate is shown to be biased, consistent and asymptotically normal.
			
            
            
            
          
        
      @article{TVP_1959_4_3_a8,
     author = {G. P. Basharin},
     title = {On a {Statistical} {Estimate} for the {Entropy} of a {Sequence} of {Independent} {Random} {Variables}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {361--364},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1959},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_3_a8/}
}
                      
                      
                    TY - JOUR AU - G. P. Basharin TI - On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1959 SP - 361 EP - 364 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1959_4_3_a8/ LA - ru ID - TVP_1959_4_3_a8 ER -
G. P. Basharin. On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 3, pp. 361-364. http://geodesic.mathdoc.fr/item/TVP_1959_4_3_a8/
