The Entropy of an Automorphism of a Solenoidal Group
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 3, pp. 249-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let us denote by $X$ a group of characters for the subgroup $R$ of an additive group of rational numbers and by $T$ its automorphism adjoint to the automorphism of the group $R$, which is given by multiplying by the irreducible fraction ${m/n}$. In this paper it is proved that the entropy of such an automorphism equals $\log(\max\{|m|,n\})$.
@article{TVP_1959_4_3_a0,
     author = {L. M. Abramov},
     title = {The {Entropy} of an {Automorphism} of a {Solenoidal} {Group}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {249--254},
     year = {1959},
     volume = {4},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_3_a0/}
}
TY  - JOUR
AU  - L. M. Abramov
TI  - The Entropy of an Automorphism of a Solenoidal Group
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1959
SP  - 249
EP  - 254
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1959_4_3_a0/
LA  - ru
ID  - TVP_1959_4_3_a0
ER  - 
%0 Journal Article
%A L. M. Abramov
%T The Entropy of an Automorphism of a Solenoidal Group
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1959
%P 249-254
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1959_4_3_a0/
%G ru
%F TVP_1959_4_3_a0
L. M. Abramov. The Entropy of an Automorphism of a Solenoidal Group. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 3, pp. 249-254. http://geodesic.mathdoc.fr/item/TVP_1959_4_3_a0/