Continuous One-Dimensional Markov Processes and Additive Functionals Derived from Them
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 2, pp. 208-211

Voir la notice de l'article provenant de la source Math-Net.Ru

The terminology and symbols employed are the same as in [1] and [2]. The paper describes all continuous Feller one-dimensional Markov processes, which are regular within a segment and gives their infinitesimal operators (Theorem 4). It is stated that each such process is a sub-process of a non-terminating process of the same type (Theorems and 1'). Therefore, a description of all processes amounts to a description of all multiplicative or additive functionals corresponding to regular Feller sub-processes of non-terminating processes.
@article{TVP_1959_4_2_a5,
     author = {V. A. Volkonskii},
     title = {Continuous {One-Dimensional} {Markov} {Processes} and {Additive} {Functionals} {Derived} from {Them}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {208--211},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1959},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_2_a5/}
}
TY  - JOUR
AU  - V. A. Volkonskii
TI  - Continuous One-Dimensional Markov Processes and Additive Functionals Derived from Them
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1959
SP  - 208
EP  - 211
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1959_4_2_a5/
LA  - ru
ID  - TVP_1959_4_2_a5
ER  - 
%0 Journal Article
%A V. A. Volkonskii
%T Continuous One-Dimensional Markov Processes and Additive Functionals Derived from Them
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1959
%P 208-211
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1959_4_2_a5/
%G ru
%F TVP_1959_4_2_a5
V. A. Volkonskii. Continuous One-Dimensional Markov Processes and Additive Functionals Derived from Them. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 2, pp. 208-211. http://geodesic.mathdoc.fr/item/TVP_1959_4_2_a5/