On the Distribution of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 4, pp. 413-429
Voir la notice de l'article provenant de la source Math-Net.Ru
Local and integral limit theorems are established for a non-periodical case. The results are given in the form of asymptotic expansions taking into account various possible values of the sums under consideration.
@article{TVP_1958_3_4_a3,
author = {I. S. Volkov},
title = {On the {Distribution} of {Sums} of {Random} {Variables} {Defined} on a {Homogeneous} {Markov} {Chain} with a {Finite} {Number} of {States}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {413--429},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {1958},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_4_a3/}
}
TY - JOUR AU - I. S. Volkov TI - On the Distribution of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1958 SP - 413 EP - 429 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1958_3_4_a3/ LA - ru ID - TVP_1958_3_4_a3 ER -
%0 Journal Article %A I. S. Volkov %T On the Distribution of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States %J Teoriâ veroâtnostej i ee primeneniâ %D 1958 %P 413-429 %V 3 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1958_3_4_a3/ %G ru %F TVP_1958_3_4_a3
I. S. Volkov. On the Distribution of Sums of Random Variables Defined on a Homogeneous Markov Chain with a Finite Number of States. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 4, pp. 413-429. http://geodesic.mathdoc.fr/item/TVP_1958_3_4_a3/