n the Unboundedness of the Sample Functions of Gaussian Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 3, pp. 351-354 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following theorem is proved: if $x(t)$ is a stationary separable gaussian random process whose spectral function has a non-null continuous component, then almost all sample functions of this process are unbounded.
@article{TVP_1958_3_3_a5,
     author = {Yu. K. Belyaev},
     title = {n the {Unboundedness} of the {Sample} {Functions} of {Gaussian} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {351--354},
     year = {1958},
     volume = {3},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_3_a5/}
}
TY  - JOUR
AU  - Yu. K. Belyaev
TI  - n the Unboundedness of the Sample Functions of Gaussian Processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1958
SP  - 351
EP  - 354
VL  - 3
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1958_3_3_a5/
LA  - ru
ID  - TVP_1958_3_3_a5
ER  - 
%0 Journal Article
%A Yu. K. Belyaev
%T n the Unboundedness of the Sample Functions of Gaussian Processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1958
%P 351-354
%V 3
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1958_3_3_a5/
%G ru
%F TVP_1958_3_3_a5
Yu. K. Belyaev. n the Unboundedness of the Sample Functions of Gaussian Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 3, pp. 351-354. http://geodesic.mathdoc.fr/item/TVP_1958_3_3_a5/