n the Unboundedness of the Sample Functions of Gaussian Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 3, pp. 351-354
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proved: if $x(t)$ is a stationary separable gaussian random process whose spectral function has a non-null continuous component, then almost all sample functions of this process are unbounded.
@article{TVP_1958_3_3_a5,
author = {Yu. K. Belyaev},
title = {n the {Unboundedness} of the {Sample} {Functions} of {Gaussian} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {351--354},
year = {1958},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_3_a5/}
}
Yu. K. Belyaev. n the Unboundedness of the Sample Functions of Gaussian Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 3, pp. 351-354. http://geodesic.mathdoc.fr/item/TVP_1958_3_3_a5/