A Remark on Characteristic Functionals
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 201-205
Cet article a éte moissonné depuis la source Math-Net.Ru
For the case of separable Hilbert space $H$ two theorems are proved that give necessary and sufficient conditions for the functional $\chi(f)$, $f\in H$, to be the characteristic functional of some probability distribution of $H$. In the first theorem the case $\int{\|x\|}^2\,dP<+\infty$ is investigated; the second one deals with the general case and the condition for it is given in the form of the continuity of $\chi(t)$ in the $\mathfrak J$-topology whose definition is contained in the paper.
@article{TVP_1958_3_2_a7,
author = {V. Sazonov},
title = {A {Remark} on {Characteristic} {Functionals}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {201--205},
year = {1958},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a7/}
}
V. Sazonov. A Remark on Characteristic Functionals. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 201-205. http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a7/