Distribution of the Superposition of Infinitely Divisible Processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 197-200
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper it is proved that for an arbitrary infinitely divisible process $\xi (t)$ and any non-negative infinitely divisible process $\eta(t)$ the distribution of their superposition $\xi(t)=\xi[\eta(t)]$ is also infinitely divisible. The corresponding spectral function $H(x)$ of that process (Levy function) is constructed. The second result is as follows: If in the sum $\zeta(t)=\xi_1+\cdots+\xi_{\eta(t)}$ all random variables are independent, process $\eta(t)$ has an infinitely divisible distribution, and the random variable $\xi_i$ satisfies condition $(V)$, then the distribution $\zeta(t)$ is infinitely divisible.
			
            
            
            
          
        
      @article{TVP_1958_3_2_a6,
     author = {V. M. Zolotarev},
     title = {Distribution of the {Superposition} of {Infinitely} {Divisible} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {197--200},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1958},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a6/}
}
                      
                      
                    V. M. Zolotarev. Distribution of the Superposition of Infinitely Divisible Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 197-200. http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a6/
