Distribution of the Superposition of Infinitely Divisible Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 197-200
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper it is proved that for an arbitrary infinitely divisible process $\xi (t)$ and any non-negative infinitely divisible process $\eta(t)$ the distribution of their superposition $\xi(t)=\xi[\eta(t)]$ is also infinitely divisible. The corresponding spectral function $H(x)$ of that process (Levy function) is constructed. The second result is as follows: If in the sum $\zeta(t)=\xi_1+\cdots+\xi_{\eta(t)}$ all random variables are independent, process $\eta(t)$ has an infinitely divisible distribution, and the random variable $\xi_i$ satisfies condition $(V)$, then the distribution $\zeta(t)$ is infinitely divisible.
@article{TVP_1958_3_2_a6,
author = {V. M. Zolotarev},
title = {Distribution of the {Superposition} of {Infinitely} {Divisible} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {197--200},
year = {1958},
volume = {3},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a6/}
}
V. M. Zolotarev. Distribution of the Superposition of Infinitely Divisible Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 197-200. http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a6/