Strong Stability of Sums and Infinitely Divisible Distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 153-165

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives some new conditions for the strong law of large numbers (s. 1. 1. n.) to be applied to a sequence of independent symmetrical random variables (r. v.). The principal result states that the s.1.1. n. for a sequence of “adjoined” infinitely divisible r. v. implies the s. 1. 1. n. for the given sequence of r. v. This result leads to “satisfactory” sufficient conditions for s. l. l. n. In special cases some of these conditions become the necessary ones.
@article{TVP_1958_3_2_a2,
     author = {Yu. V. Prokhorov},
     title = {Strong {Stability} of {Sums} and {Infinitely} {Divisible} {Distributions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {153--165},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1958},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a2/}
}
TY  - JOUR
AU  - Yu. V. Prokhorov
TI  - Strong Stability of Sums and Infinitely Divisible Distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1958
SP  - 153
EP  - 165
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a2/
LA  - ru
ID  - TVP_1958_3_2_a2
ER  - 
%0 Journal Article
%A Yu. V. Prokhorov
%T Strong Stability of Sums and Infinitely Divisible Distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1958
%P 153-165
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a2/
%G ru
%F TVP_1958_3_2_a2
Yu. V. Prokhorov. Strong Stability of Sums and Infinitely Divisible Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 153-165. http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a2/