Strong Stability of Sums and Infinitely Divisible Distributions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 153-165
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper gives some new conditions for the strong law of large numbers (s. 1. 1. n.) to be applied to a sequence of independent symmetrical random variables (r. v.).
The principal result states that the s.1.1. n. for a sequence of “adjoined” infinitely divisible r. v. implies the s. 1. 1. n. for the given sequence of r. v.
This result leads to “satisfactory” sufficient conditions for s. l. l. n. In special cases some of these conditions become the necessary ones.
			
            
            
            
          
        
      @article{TVP_1958_3_2_a2,
     author = {Yu. V. Prokhorov},
     title = {Strong {Stability} of {Sums} and {Infinitely} {Divisible} {Distributions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {153--165},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1958},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a2/}
}
                      
                      
                    Yu. V. Prokhorov. Strong Stability of Sums and Infinitely Divisible Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 153-165. http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a2/
