Branching Stochastic Processes for Particles Diffusing in a Bounded Domain with Absorbing Boundaries
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 121-136
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Particles diffusing in a multidimensional restricted domain with absorbing boundaries produce independent new particles according to a scheme for branching processes with the probability-generating function $F(z)=\sum_{k=0}^\infty P_{k^{z^k}}$, where $P_k$ is the conditional probability that a particle turns into $k$ particles, if at all. Let $P_n(x,t)$ be the probability that a particle existing at point $x$ after $t$ generations turns into $n$ particles. The probability-generating function $$F(x,t,z)=\sum_n P_n(x,t)z^n$$ satisfies (11). Let $P_0(x)=\lim _{t\to 0}P_0(x,t)$ be the probability of extinction if the initial particle was at point $x$. $P_0(x)$ satisfies a non-linear integral equation of Hammerstein’s type (21). There is a critical value $A_0>1$ for $A= F'$ (1). If $A\leq A_0$, then $P_0(x)\equiv1$; if $A>A_0$, then $P_0(x)1$. The critical value is $$A_0=\frac{D_{\lambda 1}+c}{c}$$ where $D$ is the coefficient of diffusion, $1/c$ is the mean value for the lifetime of a particle, $\lambda_1$ is the least eigenvalue of the boundary value problem in §1.
In §7 the probability distribution for a number of final particles is investigated.
			
            
            
            
          
        
      @article{TVP_1958_3_2_a0,
     author = {B. A. Sevast'yanov},
     title = {Branching {Stochastic} {Processes} for {Particles} {Diffusing} in a {Bounded} {Domain} with {Absorbing} {Boundaries}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {121--136},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1958},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a0/}
}
                      
                      
                    TY - JOUR AU - B. A. Sevast'yanov TI - Branching Stochastic Processes for Particles Diffusing in a Bounded Domain with Absorbing Boundaries JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1958 SP - 121 EP - 136 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a0/ LA - ru ID - TVP_1958_3_2_a0 ER -
%0 Journal Article %A B. A. Sevast'yanov %T Branching Stochastic Processes for Particles Diffusing in a Bounded Domain with Absorbing Boundaries %J Teoriâ veroâtnostej i ee primeneniâ %D 1958 %P 121-136 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a0/ %G ru %F TVP_1958_3_2_a0
B. A. Sevast'yanov. Branching Stochastic Processes for Particles Diffusing in a Bounded Domain with Absorbing Boundaries. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 2, pp. 121-136. http://geodesic.mathdoc.fr/item/TVP_1958_3_2_a0/
