A Note on the Capacity of a Stationary Channel with Finite Memory
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 1, pp. 84-96

Voir la notice de l'article provenant de la source Math-Net.Ru

The proof of equality of the ergodic capacity $C_e$ of a stationary channel with finite memory without anticipation and the stationary capacity $C_s$ of this channel is given using the terms in [1].
@article{TVP_1958_3_1_a4,
     author = {I. P. Tsaregradskii},
     title = {A {Note} on the {Capacity} of a {Stationary} {Channel} with {Finite} {Memory}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {84--96},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1958},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_1_a4/}
}
TY  - JOUR
AU  - I. P. Tsaregradskii
TI  - A Note on the Capacity of a Stationary Channel with Finite Memory
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1958
SP  - 84
EP  - 96
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1958_3_1_a4/
LA  - ru
ID  - TVP_1958_3_1_a4
ER  - 
%0 Journal Article
%A I. P. Tsaregradskii
%T A Note on the Capacity of a Stationary Channel with Finite Memory
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1958
%P 84-96
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1958_3_1_a4/
%G ru
%F TVP_1958_3_1_a4
I. P. Tsaregradskii. A Note on the Capacity of a Stationary Channel with Finite Memory. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 1, pp. 84-96. http://geodesic.mathdoc.fr/item/TVP_1958_3_1_a4/