On a Local Limit Theorem for Lattice Distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 2, pp. 275-281

Voir la notice de l'article provenant de la source Math-Net.Ru

Let sequence (1) of independent random variables assuming only integral values satisfy conditions (A) and (B). The following proposition is proved: In order for correlation (2) to hold true for a sequence differing from (1) only by a finite number of terms, it is necessary and sufficient for (3) to be satisfied.
@article{TVP_1957_2_2_a7,
     author = {Yu. A. Rozanov},
     title = {On a {Local} {Limit} {Theorem} for {Lattice} {Distributions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {275--281},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1957},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a7/}
}
TY  - JOUR
AU  - Yu. A. Rozanov
TI  - On a Local Limit Theorem for Lattice Distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1957
SP  - 275
EP  - 281
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a7/
LA  - ru
ID  - TVP_1957_2_2_a7
ER  - 
%0 Journal Article
%A Yu. A. Rozanov
%T On a Local Limit Theorem for Lattice Distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1957
%P 275-281
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a7/
%G ru
%F TVP_1957_2_2_a7
Yu. A. Rozanov. On a Local Limit Theorem for Lattice Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 2, pp. 275-281. http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a7/