On a Local Limit Theorem for Lattice Distributions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 2, pp. 275-281
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let sequence (1) of independent random variables assuming only integral values satisfy conditions (A) and (B). The following proposition is proved:
In order for correlation (2) to hold true for a sequence differing from (1) only by a finite number of terms, it is necessary and sufficient for (3) to be satisfied.
			
            
            
            
          
        
      @article{TVP_1957_2_2_a7,
     author = {Yu. A. Rozanov},
     title = {On a {Local} {Limit} {Theorem} for {Lattice} {Distributions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {275--281},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1957},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a7/}
}
                      
                      
                    Yu. A. Rozanov. On a Local Limit Theorem for Lattice Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 2, pp. 275-281. http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a7/
