On a Local Limit Theorem for Lattice Distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 2, pp. 275-281
Cet article a éte moissonné depuis la source Math-Net.Ru
Let sequence (1) of independent random variables assuming only integral values satisfy conditions (A) and (B). The following proposition is proved: In order for correlation (2) to hold true for a sequence differing from (1) only by a finite number of terms, it is necessary and sufficient for (3) to be satisfied.
@article{TVP_1957_2_2_a7,
author = {Yu. A. Rozanov},
title = {On a {Local} {Limit} {Theorem} for {Lattice} {Distributions}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {275--281},
year = {1957},
volume = {2},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a7/}
}
Yu. A. Rozanov. On a Local Limit Theorem for Lattice Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 2, pp. 275-281. http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a7/