A Multi-Dimensional Limit Theorem for Homogeneous Markov Chains with a Countable Number of States
Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 2, pp. 230-255
Cet article a éte moissonné depuis la source Math-Net.Ru
A homogeneous recurrent irreducible Markov chain with a countable set of states, $e_0,e_1,\dots,e_n$ is considered. The limit distributions for $n\to\infty$ of the random vector $N_n=(N_n^0,\dots,N_n^r)$ are investigated, where $N_n^r$ is the number of strikes during $n$ units of time in state $e_r$. It is assumed that the distribution function $F(x)$ of the time for returning to the fixed state satisfies the condition that for any $c>0$, $$\frac{1-F(cx)}{1-F(x)}\to c^{-\alpha},\quad x\to\infty,$$ for some $0\leq a<2,\alpha\ne1$. In this case it holds true that for some definite choice of affine transformations of an $(r+1)$-dimensional Euclidean space the distributions of vectors $A_n N_n$ converge to the undergenerate distribution on the $(r+1)$-dimensional space. The forming transformation $A_n$ and the characteristic functions of the limit distributions can be expressed.
@article{TVP_1957_2_2_a4,
author = {V. A. Volkonskii},
title = {A {Multi-Dimensional} {Limit} {Theorem} for {Homogeneous} {Markov} {Chains} with a {Countable} {Number} of {States}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {230--255},
year = {1957},
volume = {2},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a4/}
}
TY - JOUR AU - V. A. Volkonskii TI - A Multi-Dimensional Limit Theorem for Homogeneous Markov Chains with a Countable Number of States JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1957 SP - 230 EP - 255 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a4/ LA - ru ID - TVP_1957_2_2_a4 ER -
V. A. Volkonskii. A Multi-Dimensional Limit Theorem for Homogeneous Markov Chains with a Countable Number of States. Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 2, pp. 230-255. http://geodesic.mathdoc.fr/item/TVP_1957_2_2_a4/