A Theorem in the Theory of Infinitely Divisible Laws
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 4, pp. 485-489
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathfrak{F}$ be a class of infinitely divisible distribution functions $F$ for which, if $F\in\mathfrak{F}$ and 
$F*H=Q$, where $Q(x)$ is an infinitely divisible distribution function, it follows that $H$ is also an infinitely divisible distribution function. The following theorem is proved:
Class $\mathfrak{F}$ is identical to the set of all normal distributions.
			
            
            
            
          
        
      @article{TVP_1956_1_4_a6,
     author = {I. A. Ibragimov},
     title = {A {Theorem} in the {Theory} of {Infinitely} {Divisible} {Laws}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {485--489},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1956},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a6/}
}
                      
                      
                    I. A. Ibragimov. A Theorem in the Theory of Infinitely Divisible Laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 4, pp. 485-489. http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a6/
