A Theorem in the Theory of Infinitely Divisible Laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 4, pp. 485-489

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{F}$ be a class of infinitely divisible distribution functions $F$ for which, if $F\in\mathfrak{F}$ and $F*H=Q$, where $Q(x)$ is an infinitely divisible distribution function, it follows that $H$ is also an infinitely divisible distribution function. The following theorem is proved: Class $\mathfrak{F}$ is identical to the set of all normal distributions.
@article{TVP_1956_1_4_a6,
     author = {I. A. Ibragimov},
     title = {A {Theorem} in the {Theory} of {Infinitely} {Divisible} {Laws}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {485--489},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1956},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a6/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - A Theorem in the Theory of Infinitely Divisible Laws
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1956
SP  - 485
EP  - 489
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a6/
LA  - ru
ID  - TVP_1956_1_4_a6
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T A Theorem in the Theory of Infinitely Divisible Laws
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1956
%P 485-489
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a6/
%G ru
%F TVP_1956_1_4_a6
I. A. Ibragimov. A Theorem in the Theory of Infinitely Divisible Laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 4, pp. 485-489. http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a6/