On the Composition of Unimodal Distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 2, pp. 283-288
Cet article a éte moissonné depuis la source Math-Net.Ru
A distribution function is called strong unimodal if its composition with any unimodal distribution function is unimodal. The following theorem is proved: For a proper unimodal distribution $F(x)$ to be strong unimodal, it is necessary and sufficient that the function $F(x)$ be continuous, and the function log $F'(x)$ be concave at a set of points where neither the right nor the left derivative of the function $F(x)$ is equal to zero.
@article{TVP_1956_1_2_a5,
author = {I. A. Ibragimov},
title = {On the {Composition} of {Unimodal} {Distributions}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {283--288},
year = {1956},
volume = {1},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a5/}
}
I. A. Ibragimov. On the Composition of Unimodal Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 2, pp. 283-288. http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a5/