On the Composition of Unimodal Distributions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 2, pp. 283-288
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A distribution function is called strong unimodal if its composition with any unimodal distribution function is unimodal.
The following theorem is proved:
For a proper unimodal distribution $F(x)$ to be strong unimodal, it is necessary and sufficient that the function $F(x)$ be continuous, and the function log $F'(x)$ be concave at a set of points where neither the right nor the left derivative of the function $F(x)$ is equal to zero.
			
            
            
            
          
        
      @article{TVP_1956_1_2_a5,
     author = {I. A. Ibragimov},
     title = {On the {Composition} of {Unimodal} {Distributions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {283--288},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1956},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a5/}
}
                      
                      
                    I. A. Ibragimov. On the Composition of Unimodal Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 2, pp. 283-288. http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a5/
