On the Composition of Unimodal Distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 2, pp. 283-288

Voir la notice de l'article provenant de la source Math-Net.Ru

A distribution function is called strong unimodal if its composition with any unimodal distribution function is unimodal. The following theorem is proved: For a proper unimodal distribution $F(x)$ to be strong unimodal, it is necessary and sufficient that the function $F(x)$ be continuous, and the function log $F'(x)$ be concave at a set of points where neither the right nor the left derivative of the function $F(x)$ is equal to zero.
@article{TVP_1956_1_2_a5,
     author = {I. A. Ibragimov},
     title = {On the {Composition} of {Unimodal} {Distributions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {283--288},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1956},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a5/}
}
TY  - JOUR
AU  - I. A. Ibragimov
TI  - On the Composition of Unimodal Distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1956
SP  - 283
EP  - 288
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a5/
LA  - ru
ID  - TVP_1956_1_2_a5
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%T On the Composition of Unimodal Distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1956
%P 283-288
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a5/
%G ru
%F TVP_1956_1_2_a5
I. A. Ibragimov. On the Composition of Unimodal Distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 2, pp. 283-288. http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a5/