On Skorokhod Convergence
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 2, pp. 239-247
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper contains a new definition of the $S$-convergence in a $D$-space of functions having only first order discontinuities, which was introduced by A. Skorokhod [1.2]. The new definition applies to a function $f(t)$ of a real variable $t$ which takes on values in an arbitrary metric space. It is proved that the $S$-convergence may be generated by the metric $S(f,g)$ which converts $D$ into a complete metric space.
			
            
            
            
          
        
      @article{TVP_1956_1_2_a1,
     author = {A. N. Kolmogorov},
     title = {On {Skorokhod} {Convergence}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {239--247},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1956},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a1/}
}
                      
                      
                    A. N. Kolmogorov. On Skorokhod Convergence. Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 2, pp. 239-247. http://geodesic.mathdoc.fr/item/TVP_1956_1_2_a1/
