Stochastic processes whose sample functions are distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 1, pp. 146-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A way of constructing generalized random processes is given which is analogous to Mikusinski's method for defining distributions. The subject of this note is generalized stochastic processes with independent values or independent increments and stationary processes.
@article{TVP_1956_1_1_a10,
     author = {K. Urbanik},
     title = {Stochastic processes whose sample functions are distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {146--149},
     year = {1956},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1956_1_1_a10/}
}
TY  - JOUR
AU  - K. Urbanik
TI  - Stochastic processes whose sample functions are distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1956
SP  - 146
EP  - 149
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1956_1_1_a10/
LA  - ru
ID  - TVP_1956_1_1_a10
ER  - 
%0 Journal Article
%A K. Urbanik
%T Stochastic processes whose sample functions are distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1956
%P 146-149
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1956_1_1_a10/
%G ru
%F TVP_1956_1_1_a10
K. Urbanik. Stochastic processes whose sample functions are distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 1, pp. 146-149. http://geodesic.mathdoc.fr/item/TVP_1956_1_1_a10/