On $n$-homogeneous ($n\geq 4$) $C^*$-algebras over two-dimensional oriented manifolds
Taurida Journal of Computer Science Theory and Mathematics, no. 2 (2024), pp. 104-111

Voir la notice de l'article provenant de la source Math-Net.Ru

Let A be a $n$-homogeneous ($n\geqslant 4$) $C^*$-algebra. Further, suppose the space $primA$ of primitive ideals for the algebra $A$ is homeomorphic to a two-dimensional oriented manifold. In this case, the algebra $A$ can be generated by three idempotents. The algebra $A$ can not be generated by two idempotents.
Keywords: $C^*$-algebra, primitive ideals, base space, algebraic bundle, operator algebra, irreducible representation.
@article{TVIM_2024_2_a6,
     author = {M. V. Shchukin},
     title = {On $n$-homogeneous ($n\geq 4$) $C^*$-algebras over two-dimensional oriented manifolds},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {104--111},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2024_2_a6/}
}
TY  - JOUR
AU  - M. V. Shchukin
TI  - On $n$-homogeneous ($n\geq 4$) $C^*$-algebras over two-dimensional oriented manifolds
JO  - Taurida Journal of Computer Science Theory and Mathematics
PY  - 2024
SP  - 104
EP  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVIM_2024_2_a6/
LA  - en
ID  - TVIM_2024_2_a6
ER  - 
%0 Journal Article
%A M. V. Shchukin
%T On $n$-homogeneous ($n\geq 4$) $C^*$-algebras over two-dimensional oriented manifolds
%J Taurida Journal of Computer Science Theory and Mathematics
%D 2024
%P 104-111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVIM_2024_2_a6/
%G en
%F TVIM_2024_2_a6
M. V. Shchukin. On $n$-homogeneous ($n\geq 4$) $C^*$-algebras over two-dimensional oriented manifolds. Taurida Journal of Computer Science Theory and Mathematics, no. 2 (2024), pp. 104-111. http://geodesic.mathdoc.fr/item/TVIM_2024_2_a6/