On $n$-homogeneous ($n\geq 4$) $C^*$-algebras over two-dimensional oriented manifolds
Taurida Journal of Computer Science Theory and Mathematics, no. 2 (2024), pp. 104-111
Cet article a éte moissonné depuis la source Math-Net.Ru
Let A be a $n$-homogeneous ($n\geqslant 4$) $C^*$-algebra. Further, suppose the space $primA$ of primitive ideals for the algebra $A$ is homeomorphic to a two-dimensional oriented manifold. In this case, the algebra $A$ can be generated by three idempotents. The algebra $A$ can not be generated by two idempotents.
Keywords:
$C^*$-algebra, primitive ideals, base space, algebraic bundle, operator algebra, irreducible representation.
@article{TVIM_2024_2_a6,
author = {M. V. Shchukin},
title = {On $n$-homogeneous ($n\geq 4$) $C^*$-algebras over two-dimensional oriented manifolds},
journal = {Taurida Journal of Computer Science Theory and Mathematics},
pages = {104--111},
year = {2024},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVIM_2024_2_a6/}
}
TY - JOUR AU - M. V. Shchukin TI - On $n$-homogeneous ($n\geq 4$) $C^*$-algebras over two-dimensional oriented manifolds JO - Taurida Journal of Computer Science Theory and Mathematics PY - 2024 SP - 104 EP - 111 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVIM_2024_2_a6/ LA - en ID - TVIM_2024_2_a6 ER -
M. V. Shchukin. On $n$-homogeneous ($n\geq 4$) $C^*$-algebras over two-dimensional oriented manifolds. Taurida Journal of Computer Science Theory and Mathematics, no. 2 (2024), pp. 104-111. http://geodesic.mathdoc.fr/item/TVIM_2024_2_a6/