Synthesis of equilibrium
    
    
  
  
  
      
      
      
        
Taurida Journal of Computer Science Theory and Mathematics, no. 2 (2023), pp. 30-49
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a noncooperative N-player normal-form game, we introduce the concept of hybrid equilibrium (HE) by combining the concepts of Nash and Berge equilibria and Pareto maximum. Some properties of hybrid equilibria are explored and their existence in mixed strategies is established under standard assumptions of mathematical game theory (convex and compact strategy sets and continuous payoff functions). Similar results are obtained for noncooperative N-player normal-form games under uncertainty.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
uncertainty, mixed strategies, equilibrium, saddle point, Pareto optimality.
                    
                    
                    
                  
                
                
                @article{TVIM_2023_2_a1,
     author = {V. I. Zhukovskii and L. V. Zhukovskaya and L. V. Smirnova},
     title = {Synthesis of equilibrium},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {30--49},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2023_2_a1/}
}
                      
                      
                    TY - JOUR AU - V. I. Zhukovskii AU - L. V. Zhukovskaya AU - L. V. Smirnova TI - Synthesis of equilibrium JO - Taurida Journal of Computer Science Theory and Mathematics PY - 2023 SP - 30 EP - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVIM_2023_2_a1/ LA - en ID - TVIM_2023_2_a1 ER -
V. I. Zhukovskii; L. V. Zhukovskaya; L. V. Smirnova. Synthesis of equilibrium. Taurida Journal of Computer Science Theory and Mathematics, no. 2 (2023), pp. 30-49. http://geodesic.mathdoc.fr/item/TVIM_2023_2_a1/
