A new approach to optimal solutions of noncooperative games: accounting for Savage-Niehans risk
    
    
  
  
  
      
      
      
        
Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2023), pp. 19-41
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The novelty of the approach presented below is that each person in a conflict (player) seeks not only to increase his payoff but also to reduce his risk, taking into account a possible realization of any uncertainty from a given admissible set. A new concept, the so-called strongly-guaranteed Nash equilibrium in payoffs and risks, is introduced and its existence in mixed strategies is proved under standard assumptions of the theory of noncooperative games, i.e., compactness and convexity of the sets of players’ strategies and continuity of the payoff functions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Savage–Niehans risk, minimax regret, uncertainties, noncooperative game
Mots-clés : optimal solution
                    
                  
                
                
                Mots-clés : optimal solution
@article{TVIM_2023_1_a1,
     author = {V. I. Zhukovskii and L. V. Zhukovskaya and Yu. S. Mukhina},
     title = {A new approach to optimal solutions of noncooperative games: accounting for {Savage-Niehans} risk},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {19--41},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2023_1_a1/}
}
                      
                      
                    TY - JOUR AU - V. I. Zhukovskii AU - L. V. Zhukovskaya AU - Yu. S. Mukhina TI - A new approach to optimal solutions of noncooperative games: accounting for Savage-Niehans risk JO - Taurida Journal of Computer Science Theory and Mathematics PY - 2023 SP - 19 EP - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVIM_2023_1_a1/ LA - en ID - TVIM_2023_1_a1 ER -
%0 Journal Article %A V. I. Zhukovskii %A L. V. Zhukovskaya %A Yu. S. Mukhina %T A new approach to optimal solutions of noncooperative games: accounting for Savage-Niehans risk %J Taurida Journal of Computer Science Theory and Mathematics %D 2023 %P 19-41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVIM_2023_1_a1/ %G en %F TVIM_2023_1_a1
V. I. Zhukovskii; L. V. Zhukovskaya; Yu. S. Mukhina. A new approach to optimal solutions of noncooperative games: accounting for Savage-Niehans risk. Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2023), pp. 19-41. http://geodesic.mathdoc.fr/item/TVIM_2023_1_a1/
