Linear Isometries of Banach-Kantorovich $L_p$-spaces
    
    
  
  
  
      
      
      
        
Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2023), pp. 7-18
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $B$ be a complete Boolean algebra,  $Q(B)$  be the Stone compact of $B$, and  $C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions $x: Q(B) \to [-\infty, +\infty]$, assuming possibly the  values $\pm\infty$  on nowhere-dense subsets of $Q(B)$. We consider the Banach-Kantorovich  spaces $L_p(B,m)\subset C_\infty (Q(B)),$ associated with a measure $m$ defined on $B$ with the values in the algebra  of measurable real functions. It is shown that in the case when the measure $m$ has the Maharam property, for any linear isometry $U: L_p(B,m) \to L_p(B,m), 1\leq p  \infty, p \neq 2,$  there exist an injective normal homomorphisms  $T : C_\infty (Q(B)) \to C_\infty (Q(B))$  and an element  $y \in L_p(B,m)$ such that  $U(x ) =y\cdot T(x)$  for all  $x\in L_p(B,m)$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Banach-Kantorovich space, Maharam measure, vector integration, linear isometry.
                    
                    
                    
                  
                
                
                @article{TVIM_2023_1_a0,
     author = {V. I. Chilin and G. B. Zakirova},
     title = {Linear {Isometries} of {Banach-Kantorovich} $L_p$-spaces},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {7--18},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2023_1_a0/}
}
                      
                      
                    TY - JOUR AU - V. I. Chilin AU - G. B. Zakirova TI - Linear Isometries of Banach-Kantorovich $L_p$-spaces JO - Taurida Journal of Computer Science Theory and Mathematics PY - 2023 SP - 7 EP - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVIM_2023_1_a0/ LA - en ID - TVIM_2023_1_a0 ER -
V. I. Chilin; G. B. Zakirova. Linear Isometries of Banach-Kantorovich $L_p$-spaces. Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2023), pp. 7-18. http://geodesic.mathdoc.fr/item/TVIM_2023_1_a0/
