Linear Isometries of Banach-Kantorovich $L_p$-spaces
Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2023), pp. 7-18

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a complete Boolean algebra, $Q(B)$ be the Stone compact of $B$, and $C_\infty (Q(B))$ be the commutative unital algebra of all continuous functions $x: Q(B) \to [-\infty, +\infty]$, assuming possibly the values $\pm\infty$ on nowhere-dense subsets of $Q(B)$. We consider the Banach-Kantorovich spaces $L_p(B,m)\subset C_\infty (Q(B)),$ associated with a measure $m$ defined on $B$ with the values in the algebra of measurable real functions. It is shown that in the case when the measure $m$ has the Maharam property, for any linear isometry $U: L_p(B,m) \to L_p(B,m), 1\leq p \infty, p \neq 2,$ there exist an injective normal homomorphisms $T : C_\infty (Q(B)) \to C_\infty (Q(B))$ and an element $y \in L_p(B,m)$ such that $U(x ) =y\cdot T(x)$ for all $x\in L_p(B,m)$.
Keywords: Banach-Kantorovich space, Maharam measure, vector integration, linear isometry.
@article{TVIM_2023_1_a0,
     author = {V. I. Chilin and G. B. Zakirova},
     title = {Linear {Isometries} of {Banach-Kantorovich} $L_p$-spaces},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {7--18},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2023_1_a0/}
}
TY  - JOUR
AU  - V. I. Chilin
AU  - G. B. Zakirova
TI  - Linear Isometries of Banach-Kantorovich $L_p$-spaces
JO  - Taurida Journal of Computer Science Theory and Mathematics
PY  - 2023
SP  - 7
EP  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVIM_2023_1_a0/
LA  - en
ID  - TVIM_2023_1_a0
ER  - 
%0 Journal Article
%A V. I. Chilin
%A G. B. Zakirova
%T Linear Isometries of Banach-Kantorovich $L_p$-spaces
%J Taurida Journal of Computer Science Theory and Mathematics
%D 2023
%P 7-18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVIM_2023_1_a0/
%G en
%F TVIM_2023_1_a0
V. I. Chilin; G. B. Zakirova. Linear Isometries of Banach-Kantorovich $L_p$-spaces. Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2023), pp. 7-18. http://geodesic.mathdoc.fr/item/TVIM_2023_1_a0/