On a basic invariants of the symmetry group of complex polyhedron $\frac{1}{p}{\gamma}_{n}^{m}$
Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2021), pp. 72-78
Cet article a éte moissonné depuis la source Math-Net.Ru
In a $n$-dimensional unitary space ${U}^{n}$ (${n}>4$) there are three series of regular polytopes: the regular simplex $\alpha_{n}$, the generalized cross polytopes $\beta^{m}_{n}$ and the generalized $n$-cube $\gamma^{m}_{n}$. The generalized $n$-cube has ${m}^{n}$ vertices: $$ (\theta^{{k}_{1}},\theta^{{k}_{2}},\dots, \theta^{{k}_{n}}),$$ where ${k}_{1}, {k}_{2},\dots, {k}_{n}$ take any integral values and $\theta$ is a primitive $m$th root of unity. For a certain divisor $p$ of the number $m$ the vertices of $\gamma^{m}_{n}$ with $$ \sum_{i=1}^{n}{{k}_{i}}\equiv 0\pmod{p}$$ (there are $qm^{n-1}$ of them if $m=pq$) determine a complex polytope $\frac{1}{p}\gamma^{m}_{n}$. The symmetry group of $\frac{1}{p}\gamma^{m}_{n}$ is the imprimitive group $G(m,p,n)$ generated by reflections. It is well known that the set of polynomials invariant with respect to $G(m,p,n)$ forms an algebra generated by $n$ algebraically independent homogeneous polynomials of degrees $m, 2m,\dots, (n-1)m, qn$ (a system of basic invariants of group $G(m,p,n)$). In this paper, we study the properties of basic invariants of group $G(m,p,n)$. It is given a positive solution to the «vertex problem» for the polytope $\frac{1}{p}\gamma^{m}_{n}$ if $p$ and $n$ is mutually prime. Namely, polynomials $$ {V}_{s}=\sum_{{k}_{i}}(\theta^{{k}_{1}}{x}_{1}+\theta^{{k}_{2}}{x}_{2}+\dots+\theta^{{k}_{n}}{x}_{n})^{ms}, \sum_{i=1}^{n}{{k}_{i}}\equiv 0\pmod{p}, s=\overline{1,n-1} $$ are algebraically independent and are basic invariants of group $G(m,p,n)$ if $p$ and $n$ is mutually prime.
Keywords:
Unitary space, reflection, basic invariant, algebra of invariants, complex polyhedron.
@article{TVIM_2021_3_a4,
author = {O. I. Rudnitsky},
title = {On a basic invariants of the symmetry group of complex polyhedron $\frac{1}{p}{\gamma}_{n}^{m}$},
journal = {Taurida Journal of Computer Science Theory and Mathematics},
pages = {72--78},
year = {2021},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVIM_2021_3_a4/}
}
TY - JOUR
AU - O. I. Rudnitsky
TI - On a basic invariants of the symmetry group of complex polyhedron $\frac{1}{p}{\gamma}_{n}^{m}$
JO - Taurida Journal of Computer Science Theory and Mathematics
PY - 2021
SP - 72
EP - 78
IS - 3
UR - http://geodesic.mathdoc.fr/item/TVIM_2021_3_a4/
LA - ru
ID - TVIM_2021_3_a4
ER -
O. I. Rudnitsky. On a basic invariants of the symmetry group of complex polyhedron $\frac{1}{p}{\gamma}_{n}^{m}$. Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2021), pp. 72-78. http://geodesic.mathdoc.fr/item/TVIM_2021_3_a4/