On a basic invariants of the symmetry group of complex polyhedron $\frac{1}{p}{\gamma}_{n}^{m}$
    
    
  
  
  
      
      
      
        
Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2021), pp. 72-78
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In a $n$-dimensional unitary space ${U}^{n}$ (${n}>4$) there are three series of regular polytopes: the regular simplex $\alpha_{n}$, the generalized cross polytopes $\beta^{m}_{n}$ and the generalized $n$-cube $\gamma^{m}_{n}$. The generalized $n$-cube has ${m}^{n}$ vertices: $$ (\theta^{{k}_{1}},\theta^{{k}_{2}},\dots, \theta^{{k}_{n}}),$$ where ${k}_{1}, {k}_{2},\dots, {k}_{n}$ take any integral values and $\theta$ is a primitive $m$th root of unity. For a certain divisor $p$ of the number $m$ the vertices of $\gamma^{m}_{n}$ with $$ \sum_{i=1}^{n}{{k}_{i}}\equiv 0\pmod{p}$$ (there are $qm^{n-1}$ of them if $m=pq$) determine a complex polytope $\frac{1}{p}\gamma^{m}_{n}$. The symmetry group of $\frac{1}{p}\gamma^{m}_{n}$ is the imprimitive group $G(m,p,n)$ generated by reflections. It is well known that the set of polynomials invariant with respect to $G(m,p,n)$ forms an algebra generated by $n$ algebraically independent homogeneous polynomials of degrees $m, 2m,\dots, (n-1)m, qn$ (a system of basic invariants of group $G(m,p,n)$). In this paper, we study the properties of basic invariants of group $G(m,p,n)$. It is given a positive solution to the «vertex problem» for the polytope $\frac{1}{p}\gamma^{m}_{n}$ if $p$ and $n$ is mutually prime. Namely, polynomials $$ {V}_{s}=\sum_{{k}_{i}}(\theta^{{k}_{1}}{x}_{1}+\theta^{{k}_{2}}{x}_{2}+\dots+\theta^{{k}_{n}}{x}_{n})^{ms}, \sum_{i=1}^{n}{{k}_{i}}\equiv 0\pmod{p}, s=\overline{1,n-1} $$ are algebraically independent and are basic invariants of group $G(m,p,n)$ if $p$ and $n$ is mutually prime.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Unitary space, reflection, basic invariant, algebra of invariants, complex polyhedron.
                    
                  
                
                
                @article{TVIM_2021_3_a4,
     author = {O. I. Rudnitsky},
     title = {On a basic invariants of the symmetry group of complex polyhedron $\frac{1}{p}{\gamma}_{n}^{m}$},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {72--78},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2021_3_a4/}
}
                      
                      
                    TY  - JOUR
AU  - O. I. Rudnitsky
TI  - On a basic invariants of the symmetry group of complex polyhedron $\frac{1}{p}{\gamma}_{n}^{m}$
JO  - Taurida Journal of Computer Science Theory and Mathematics
PY  - 2021
SP  - 72
EP  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVIM_2021_3_a4/
LA  - ru
ID  - TVIM_2021_3_a4
ER  - 
                      
                      
                    %0 Journal Article
%A O. I. Rudnitsky
%T On a basic invariants of the symmetry group of complex polyhedron $\frac{1}{p}{\gamma}_{n}^{m}$
%J Taurida Journal of Computer Science Theory and Mathematics
%D 2021
%P 72-78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVIM_2021_3_a4/
%G ru
%F TVIM_2021_3_a4
                      
                      
                    O. I. Rudnitsky. On a basic invariants of the symmetry group of complex polyhedron $\frac{1}{p}{\gamma}_{n}^{m}$. Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2021), pp. 72-78. http://geodesic.mathdoc.fr/item/TVIM_2021_3_a4/
                  
                