On $3$-homogeneous $C^{*}$-algebras over two-dimensional oriented manifolds
Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2020), pp. 11-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider algebraic bundles over a two-dimensional compact oriented connected manifold. In 1961 J. Fell, J. Tomiyama, M. Takesaki showed that every $n$-homogeneous $C^{*}$-algebra is isomorphic to the algebra of all continuous sections for the appropriate algebraic bundle. By using this realization we prove in the work that every $3$-homogeneous $C^{*}$-algebra over two-dimensional compact oriented connected manifold can be generated by three idempotents. Such algebra can not be generated by two idempotents.
Keywords: $n$-homogeneous $C^{*}$-algebras idempotent two-dimensional manifold number of generators operator algebras.
@article{TVIM_2020_1_a0,
     author = {M. V. Shchukin},
     title = {On $3$-homogeneous $C^{*}$-algebras over two-dimensional oriented manifolds},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {11--18},
     year = {2020},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2020_1_a0/}
}
TY  - JOUR
AU  - M. V. Shchukin
TI  - On $3$-homogeneous $C^{*}$-algebras over two-dimensional oriented manifolds
JO  - Taurida Journal of Computer Science Theory and Mathematics
PY  - 2020
SP  - 11
EP  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVIM_2020_1_a0/
LA  - en
ID  - TVIM_2020_1_a0
ER  - 
%0 Journal Article
%A M. V. Shchukin
%T On $3$-homogeneous $C^{*}$-algebras over two-dimensional oriented manifolds
%J Taurida Journal of Computer Science Theory and Mathematics
%D 2020
%P 11-18
%N 1
%U http://geodesic.mathdoc.fr/item/TVIM_2020_1_a0/
%G en
%F TVIM_2020_1_a0
M. V. Shchukin. On $3$-homogeneous $C^{*}$-algebras over two-dimensional oriented manifolds. Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2020), pp. 11-18. http://geodesic.mathdoc.fr/item/TVIM_2020_1_a0/