On the operators of Hardy's type
Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2019), pp. 98-106

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain sufficient conditions for the boundedness of the generalized Hardy-Littlewood operator and the Hardy type operator in ideal spaces of the form $E_\alpha$, where $\alpha(t)$ is a positive, Lebesgue-measurable function. $E$ is a symmetric space.
Keywords: symmetry spasce, ideal, lattice, operator Hardy.
@article{TVIM_2019_3_a5,
     author = {E. A. Pavlov},
     title = {On the operators of {Hardy's} type},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {98--106},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2019_3_a5/}
}
TY  - JOUR
AU  - E. A. Pavlov
TI  - On the operators of Hardy's type
JO  - Taurida Journal of Computer Science Theory and Mathematics
PY  - 2019
SP  - 98
EP  - 106
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVIM_2019_3_a5/
LA  - ru
ID  - TVIM_2019_3_a5
ER  - 
%0 Journal Article
%A E. A. Pavlov
%T On the operators of Hardy's type
%J Taurida Journal of Computer Science Theory and Mathematics
%D 2019
%P 98-106
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVIM_2019_3_a5/
%G ru
%F TVIM_2019_3_a5
E. A. Pavlov. On the operators of Hardy's type. Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2019), pp. 98-106. http://geodesic.mathdoc.fr/item/TVIM_2019_3_a5/