On the operators of Hardy's type
Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2019), pp. 98-106
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we obtain sufficient conditions for the boundedness of the generalized Hardy-Littlewood operator and the Hardy type operator in ideal spaces of the form $E_\alpha$, where $\alpha(t)$ is a positive, Lebesgue-measurable function. $E$ is a symmetric space.
Keywords:
symmetry spasce, ideal, lattice, operator Hardy.
@article{TVIM_2019_3_a5,
author = {E. A. Pavlov},
title = {On the operators of {Hardy's} type},
journal = {Taurida Journal of Computer Science Theory and Mathematics},
pages = {98--106},
publisher = {mathdoc},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVIM_2019_3_a5/}
}
E. A. Pavlov. On the operators of Hardy's type. Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2019), pp. 98-106. http://geodesic.mathdoc.fr/item/TVIM_2019_3_a5/