Hybrid equilibrium in $N$-person games
Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2019), pp. 66-81
Voir la notice de l'article provenant de la source Math-Net.Ru
How can we combine altruism of Berge equilibrium with selfishness of Nash equilibrium? The positive answer to this question will be given below. In short, they can be combined but in the class of mixed strategies. For a noncooperative $N$-player normal form game, we introduce the concept of hybrid equilibrium (HE) by synthesizing the concepts of Nash and Berge equilibria and Pareto maximum. Some properties of this equilibrium
are explored and its existence in mixed strategies is established under standard assumptions of mathematical game theory (convex and compact strategy sets and continuous payoff functions).
Keywords:
Berge equilibrium, Nash equilibrium, noncooperative game.
Mots-clés : Pareto optimum, Germeier convolution
Mots-clés : Pareto optimum, Germeier convolution
@article{TVIM_2019_3_a3,
author = {K. N. Kudryavtsev and V. I. Zhukovskii and L. V. Zhukovskaya},
title = {Hybrid equilibrium in $N$-person games},
journal = {Taurida Journal of Computer Science Theory and Mathematics},
pages = {66--81},
publisher = {mathdoc},
number = {3},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVIM_2019_3_a3/}
}
TY - JOUR AU - K. N. Kudryavtsev AU - V. I. Zhukovskii AU - L. V. Zhukovskaya TI - Hybrid equilibrium in $N$-person games JO - Taurida Journal of Computer Science Theory and Mathematics PY - 2019 SP - 66 EP - 81 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVIM_2019_3_a3/ LA - en ID - TVIM_2019_3_a3 ER -
K. N. Kudryavtsev; V. I. Zhukovskii; L. V. Zhukovskaya. Hybrid equilibrium in $N$-person games. Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2019), pp. 66-81. http://geodesic.mathdoc.fr/item/TVIM_2019_3_a3/