The approximation of indefinite Schur's functions
Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2019), pp. 7-22
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper by M. G. Krein and H. Langer [18] researched the questions about aproximations of Nevanlinna functions. Our purpose is to get such result for Schur functions. A function $s(\lambda)$ is called a generalized Schur function if it is meromorphic in the open unit disk and the kernel $\displaystyle{K_{s}(\lambda,\mu)=\frac{1-s(\lambda)\overline{s(\mu)}}{1-\lambda\overline{\mu}}}$ has finite number of negative squares. A set of all such functions forms the generalized Schur class.
As it is known, Schur function admits a unitary realization $ s(\lambda)=s(0)+\lambda [(I-\lambda T)^{-1}u,v]$ or, in other words, it is a characteristic function for some unitary colligation $V$:
$$ V=\begin{bmatrix}
T\\
\\
[\cdot,v](0)
\end{bmatrix}:\begin{pmatrix}
\Pi_{\varkappa}\\
\\
\mathbb{C}
\end{pmatrix}\rightarrow
\begin{pmatrix}
\Pi_{\varkappa}\\
\\
\mathbb{C}
\end{pmatrix},$$ Here
$\Pi_{\varkappa}$ is a Pontryagin space with indefinite inner
product $[\cdot,\cdot]$, $T$ is a contractive operator in
$\Pi_{\varkappa},$ and
$u, v\in\Pi_{\varkappa}.$
Note that the unitary colligation must be chosen minimal what means that
$\Pi_{\varkappa}=\overline{span}
\{T^{n}u,(T^{c})^{m}v:n,m=0,1,2,\ldots\},$ where
$T^{c}$ is $\pi_{\varkappa}$-adjoint with $T$.
Let $T$ be a contractive operator in $\Pi_{\varkappa}.$
Then the element $u\in\Pi_{\varkappa}$ is called generating for operator $T$ if
$$ \Pi_{\varkappa}=\overline{span}
\displaystyle{\{(I-\lambda T)^{-1}u,~~\lambda\in
\mathbb{D},~~\frac{1}{\lambda}\notin\sigma_{p}(T)\}}.$$ By $W_{\theta}$ we denote a set of all $\beta\in
\mathbb{C_{-}}$ such that
$\displaystyle{|\arg\beta+\frac{\pi}{2}|\leqslant\theta},$ where $\displaystyle{0\leqslant\theta\frac{\pi}{2}}.$
By $\Lambda_{\theta}$ denote a set of all
$\lambda\in\mathbb{D}$,
where $\mathbb{D}=\{\xi:|\xi|1\}$ such that
$$\lambda=(\alpha-i)(\alpha+i)^{-1},~~~-\alpha\in
W_{\theta}.$$
The main result of this research is researched the question of the representation generalized Schur function in the neighborhood of the unit.
Let $s(\lambda)=\lambda^{k}s_{k}(\lambda),~s_{k}(0)\neq 0$,
$k\leqslant n.$ Then we have assertions
$s\in S_{\varkappa}$, where $S_{\varkappa}$ is a generalized Schur class;
for some integer $n > 0$ there exist $2n$ numbers $c_{1},c_{2},\ldots,c_{2n}$ such that
the following equality is true:
$ \displaystyle{s(\lambda)=1-\sum_{\nu=1}^{2n}{c_{\nu}(\lambda-1)^{\nu}}+
O((\lambda-1)^{2n+1}),~~\lambda\rightarrow1,~\lambda\in\Lambda_{\theta}}
$
if and only if there exist a Pontryagin space $\Pi_{\varkappa}$ , a contractive operator $T$ in $\Pi_{\varkappa}$, and a generative element $u\in dom(I-T)^{-(n+1)}$ for operator $T$ such that:
$$ s(\lambda)=\lambda^{k}-
\frac{1}{\overline{s_{k}(0)}}\lambda^{k}(\lambda-1)[(I-\lambda
T)^{-1}(I-T)^{-1}T^{k+1}u,T^{k}u],~\\ \lambda\in \mathbb{D},~
\frac{1}{\lambda}\notin\sigma_{p}(T)$$ In this case we can express $c_{\nu}$ in such form:
$$
c_{\nu}= \left\{\begin{array}{l}\displaystyle{
\frac{1}{\overline{s_{k}(0)}}}
\sum\limits_{i=1}^{\nu}C_{k-i}^{\nu-i}[(I-T)^{-(i
+1)}T^{k+1}u,T^{k}u]-C_{k}^{\nu},~ 1\leqslant\nu k+1; \\
\displaystyle{\frac{1}{\overline{s_{k}(0)}}[(I-T)^{-(\nu+1)}T^{\nu}u,T^{k}u]},~~
k+1\leqslant\nu\leqslant
n;\\
\displaystyle{\frac{1}{\overline{s_{k}(0)}}[(I-T)^{-(n+1)}T^{n}u,(I-T^{c})^{-(\nu-n)}T^{c(\nu-n)}T^{k}u]},\\
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n+1\leqslant\nu\leqslant
2n.
\end{array}\right.
$$
Keywords:
Schur function, approximation, contraction, Pontryagin space, Cayley-Neumann transformation, indefinite metric, unitary
realization, operator.
Mots-clés : kernel
Mots-clés : kernel
@article{TVIM_2019_3_a0,
author = {E. N. Andreishcheva},
title = {The approximation of indefinite {Schur's} functions},
journal = {Taurida Journal of Computer Science Theory and Mathematics},
pages = {7--22},
publisher = {mathdoc},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVIM_2019_3_a0/}
}
E. N. Andreishcheva. The approximation of indefinite Schur's functions. Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2019), pp. 7-22. http://geodesic.mathdoc.fr/item/TVIM_2019_3_a0/