Isomorphism of spectral and translational presentations of self-adjoint dilation of dissipative operator
    
    
  
  
  
      
      
      
        
Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2018), pp. 40-47
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $A$ be a linear dissipative operator with dense domain $\mathfrak{D}(A)$ in Hilbert space $\mathfrak{H}$ and $-i \in \rho(A).$ We consider the self-adjoint operators $B=iR-iR^{\ast}-2R^{\ast}R, \ \widetilde{B}=iR-iR^{\ast}-2RR^{\ast},$ where $ R=(A+iI)^{-1}.$ Let $Q=\sqrt{B},$ $\widetilde{Q}=\sqrt{\widetilde{B}},$ $\mathfrak{H}_{1}=\overline{Q \mathfrak{H}},$ $\mathfrak{H}_{2}=\overline{\widetilde{Q} \mathfrak{H}}.$ 1. Spectral presentation. We consider the Hilbert spaces $H_{+}=L_{2}(0, \infty; \mathfrak{H_{1}}),$ $H_{-}=L_{2}(-\infty, 0; \mathfrak{H_{2}}),$ $H=H_{-}\bigoplus \mathfrak{H}\bigoplus H_{+}$ and operator $S$, $h=(h_{-}, h_{0}, h_{+}) \in \mathfrak{D}(S)$ if and only if  $a) \ \left\lbrace h_{\pm}, \dfrac{dh_{\pm}}{dt} \right\rbrace \subset H{\pm},$  $b) \ \varphi=h_{0}+\widetilde{Q}h_{-}(0) \in \mathfrak{D}(A),$  $c) \ h_{+}(0)=T^{\ast}h_{-}(0)+iD\varphi,$ where $T^{\ast}=I+2iR^{\ast},$ $D=Q(A+iI).$ $S(h_{-}, h_{0}, h_{+})=\left( i\dfrac{dh_{-}}{dt}, -ih_{0}+(A+iI)\varphi, \dfrac{dh_{+}}{dt} \right).$ $S$ is dilatation of $A.$ 2. Translational presentation. We consider the Hilbert spaces $\mathfrak{H}_{-}=\underset{-\infty }{\overset{-1}{\mathop \oplus }}\mathfrak{H}_{2},$ $\mathfrak{H}_{+}=\underset{\infty }{\overset{1}{\mathop \oplus }}\mathfrak{H}_{1}$ and $\mathbf{H}=\mathfrak{H}_{-}\oplus\mathfrak{H}\oplus\mathfrak{H}_{+},$ $f=(\ldots, f_{-1}, f_{0}, f_{1}, \ldots) \in \mathbf{H}$ if and only if $\sum_{-\infty}^{\infty}\|f_{n}\|^{2} \infty,$ $f_{0} \in \mathfrak{H},$ $f_{n}\in \mathfrak{H}_{1},$ $f_{-n}\in \mathfrak{H}_{2,}$ $n\in \mathbb{N}.$ We consider the operators $S_{+}f=\sum_{k=1}^{\infty}f_{k},$ $S_{-}f=\sum_{k=1}^{\infty}f_{-k}.$ \[f\in \mathfrak{D}(S_{\mathbf{T}})\] if and only if  $a) \ f\in \mathfrak{D}(S_{+})\bigcap \mathfrak{D}(S_{-}),$ $\sum_{n=1}^{\infty}\|S_{n}f\|^{2}\infty,$ $\sum_{n=1}^{\infty}\|S_{-n}f\|^{2}\infty,$ where $S_{n}f=-\dfrac{1}{2}f_{n}-\sum_{k=n+1}^{\infty}f_{k},$ $S_{-n}=\dfrac{1}{2}f_{n}+\sum_{k=n+1}^{\infty}f_{-k}.$  $b) \ \varphi'=f_{0}+\widetilde{Q}S_{-}f\in\mathfrak{D}(A).$  $c) \  S_{+}f=T^{\ast}S_{-}f+iD\varphi'$ and $S_{\mathrm{T}}f=(... g_{-1}, g_{0}, g_{1}, ...),$ where $g_{0}=-if_{0}+(A+iI)\varphi',$ $g_{n}=iS_{n}f,$ $n\in \mathbb{Z}\backslash\{0\}.$ $S_{\mathrm{T}}$ is dilatation of $A.$ Theorem.
	If the spaces $\mathfrak{H}_{1}$ and $\mathfrak{H}_{2}$ are separable, then the dilations $S$ and $S_{\mathrm{T}}$ are isomorphic.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
dissipative operator, self-adjoint dilation
Mots-clés : isomorphism of dilations.
                    
                  
                
                
                Mots-clés : isomorphism of dilations.
@article{TVIM_2018_1_a3,
     author = {Yu. L. Kudryashov},
     title = {Isomorphism of spectral and translational presentations of self-adjoint dilation of dissipative operator},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {40--47},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2018_1_a3/}
}
                      
                      
                    TY - JOUR AU - Yu. L. Kudryashov TI - Isomorphism of spectral and translational presentations of self-adjoint dilation of dissipative operator JO - Taurida Journal of Computer Science Theory and Mathematics PY - 2018 SP - 40 EP - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVIM_2018_1_a3/ LA - ru ID - TVIM_2018_1_a3 ER -
%0 Journal Article %A Yu. L. Kudryashov %T Isomorphism of spectral and translational presentations of self-adjoint dilation of dissipative operator %J Taurida Journal of Computer Science Theory and Mathematics %D 2018 %P 40-47 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVIM_2018_1_a3/ %G ru %F TVIM_2018_1_a3
Yu. L. Kudryashov. Isomorphism of spectral and translational presentations of self-adjoint dilation of dissipative operator. Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2018), pp. 40-47. http://geodesic.mathdoc.fr/item/TVIM_2018_1_a3/
