Интегрируемые динамические системы нечетного порядка с диссипацией разного знака
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 33 (2023) no. 33, pp. 424-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2023_33_33_a16,
     author = {M. V. Shamolin},
     title = {{\CYRI}{\cyrn}{\cyrt}{\cyre}{\cyrg}{\cyrr}{\cyri}{\cyrr}{\cyru}{\cyre}{\cyrm}{\cyrery}{\cyre} {\cyrd}{\cyri}{\cyrn}{\cyra}{\cyrm}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyre} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm}{\cyrery} {\cyrn}{\cyre}{\cyrch}{\cyre}{\cyrt}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrp}{\cyro}{\cyrr}{\cyrya}{\cyrd}{\cyrk}{\cyra} {\cyrs} {\cyrd}{\cyri}{\cyrs}{\cyrs}{\cyri}{\cyrp}{\cyra}{\cyrc}{\cyri}{\cyre}{\cyrishrt} {\cyrr}{\cyra}{\cyrz}{\cyrn}{\cyro}{\cyrg}{\cyro} {\cyrz}{\cyrn}{\cyra}{\cyrk}{\cyra}},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {424--464},
     year = {2023},
     volume = {33},
     number = {33},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a16/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Интегрируемые динамические системы нечетного порядка с диссипацией разного знака
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2023
SP  - 424
EP  - 464
VL  - 33
IS  - 33
UR  - http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a16/
LA  - ru
ID  - TSP_2023_33_33_a16
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Интегрируемые динамические системы нечетного порядка с диссипацией разного знака
%J Trudy Seminara im. I.G. Petrovskogo
%D 2023
%P 424-464
%V 33
%N 33
%U http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a16/
%G ru
%F TSP_2023_33_33_a16
M. V. Shamolin. Интегрируемые динамические системы нечетного порядка с диссипацией разного знака. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 33 (2023) no. 33, pp. 424-464. http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a16/

[1] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR

[2] Georgievskii D. V., Shamolin M. V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbb{R}^n$”, Dokl. RAN, 383:5 (2002), 635–637

[3] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979

[4] Dubrovin B. A., Novikov S. P., “O skobkakh Puassona gidrodinamicheskogo tipa”, DAN SSSR, 219:2 (1984), 228–237

[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971

[6] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl

[7] Kozlov V. V., “Ratsionalnye integraly kvaziodnorodnykh dinamicheskikh sistem”, Prikl. matem. i mekhan., 79:3 (2015), 307–316 | Zbl

[8] Trofimov V. V., Shamolin M. V., “Geometricheskie i dinamicheskie invarianty integriruemykh gamiltonovykh i dissipativnykh sistem”, Fundam. i prikl. matem., 16:4 (2010), 3–229

[9] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., v. 1, Izd-vo AN SSSR, L., 1933, 133–135

[10] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[11] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1987 | MR

[12] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. matem. i mekhan., 57:4 (1993), 40–49 | MR | Zbl

[13] Shamolin M. V., “Vvedenie v zadachu o tormozhenii tela v soprotivlyayuscheisya srede i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1996, no. 4, 57–69 | Zbl

[14] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, UMN, 53:3 (1998), 209–210 | DOI | MR | Zbl

[15] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, UMN, 62:5 (2007), 169–170 | DOI | MR | Zbl

[16] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundam. i prikl. matem., 14:3 (2008), 3–237

[17] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN, 437:2 (2011), 190–193 | MR

[18] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN, 442:4 (2012), 479–481 | MR

[19] Shamolin M. V., “Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole sil”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Tematicheskie obzory, 125, 2013, 5–254

[20] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere i prilozheniya”, Fundam. i prikl. matem., 20:4 (2015), 3–231

[21] Shamolin M. V., “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k sfere”, Problemy matem. analiza, 2016, no. 86, 139–151 | Zbl

[22] Shamolin M. V., “Novye sluchai integriruemosti sistem s dissipatsiei na kasatelnykh rassloeniyakh k dvumernoi i trekhmernoi sferam”, Dokl. RAN, 471:5 (2016), 547–551 | DOI | MR

[23] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Dokl. RAN, 475:5 (2017), 519–523 | MR

[24] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Dokl. RAN, 474:2 (2017), 177–181 | DOI | MR

[25] Shamolin M. V., “Integriruemye sistemy s dissipatsiei s dvumya i tremya stepenyam svobody”, Problemy matem. analiza, 2018, no. 94, 91–109 | MR | Zbl

[26] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernogo mnogoobraziya”, Dokl. RAN, 482:5 (2018), 527–533 | DOI | MR

[27] Shamolin M. V., “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii chetyrekhmernogo mnogoobraziya”, Dokl. RAN, 479:3 (2018), 270–276 | DOI | MR

[28] Shamolin M. V., “Sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Problemy matem. analiza, 2018, no. 90, 107–113 | MR | Zbl

[29] Shamolin M. V., “Integriruemye dinamicheskie sistemy s konechnym chislom stepenei svobody s dissipatsiei”, Problemy matem. analiza, 2018, no. 95, 79–101 | MR | Zbl

[30] Shamolin M. V., “Novye sluchai integriruemykh sistem pyatogo poryadka s dissipatsiei”, Dokl. RAN, 485:5 (2019), 583–587 | DOI

[31] Shamolin M. V., “Novye sluchai integriruemykh sistem sedmogo poryadka s dissipatsiei”, Dokl. RAN, 487:4 (2019), 381–386 | DOI