Применение теории полугрупп операторов к исследованию вольтерровых интегро-дифференциальных уравнений
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 33 (2023) no. 33, pp. 328-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2023_33_33_a14,
     author = {N. A. Rautian},
     title = {{\CYRP}{\cyrr}{\cyri}{\cyrm}{\cyre}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyre} {\cyrt}{\cyre}{\cyro}{\cyrr}{\cyri}{\cyri} {\cyrp}{\cyro}{\cyrl}{\cyru}{\cyrg}{\cyrr}{\cyru}{\cyrp}{\cyrp} {\cyro}{\cyrp}{\cyre}{\cyrr}{\cyra}{\cyrt}{\cyro}{\cyrr}{\cyro}{\cyrv} {\cyrk} {\cyri}{\cyrs}{\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyryu} {\cyrv}{\cyro}{\cyrl}{\cyrsftsn}{\cyrt}{\cyre}{\cyrr}{\cyrr}{\cyro}{\cyrv}{\cyrery}{\cyrh} {\cyri}{\cyrn}{\cyrt}{\cyre}{\cyrg}{\cyrr}{\cyro}-{\cyrd}{\cyri}{\cyrf}{\cyrf}{\cyre}{\cyrr}{\cyre}{\cyrn}{\cyrc}{\cyri}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrishrt}},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {328--352},
     year = {2023},
     volume = {33},
     number = {33},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a14/}
}
TY  - JOUR
AU  - N. A. Rautian
TI  - Применение теории полугрупп операторов к исследованию вольтерровых интегро-дифференциальных уравнений
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2023
SP  - 328
EP  - 352
VL  - 33
IS  - 33
UR  - http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a14/
LA  - ru
ID  - TSP_2023_33_33_a14
ER  - 
%0 Journal Article
%A N. A. Rautian
%T Применение теории полугрупп операторов к исследованию вольтерровых интегро-дифференциальных уравнений
%J Trudy Seminara im. I.G. Petrovskogo
%D 2023
%P 328-352
%V 33
%N 33
%U http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a14/
%G ru
%F TSP_2023_33_33_a14
N. A. Rautian. Применение теории полугрупп операторов к исследованию вольтерровых интегро-дифференциальных уравнений. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 33 (2023) no. 33, pp. 328-352. http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a14/

[1] Ilyushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termovyazkouprugosti, Nauka, M., 1970 | MR

[2] Christensen R. M., Theory of viscoelasticity. An introduction, Academic Press, New York, 1971

[3] Munoz Rivera J. E., Naso M. G., Vegni F. M., “Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory”, J. Math. Anal. Appl., 286 (2003), 692–704 | DOI | MR | Zbl

[4] Kopachevsky N. D., Krein S. G., Operator Approach to Linear Problems of Hydrodynamics, v. 2, Operator Theory: Advances and Applications, 146, Nonself-Adjoint Problems for Viscous Fluids, Birkhäuser, Basel, 2003 | MR | Zbl

[5] Zakora D. A., “Asymptotics of solutions in the problem about small motions of a compressible Maxwell fluid”, Different. Equ, 55:9 (2019), 1150–1163 | DOI | MR | Zbl

[6] Lokshin A. A., Suvorova Yu. V., Matematicheskaya teoriya rasprostraneniya voln v sredakh s pamyatyu, Izd-vo Mosk. un-ta, M., 1982

[7] Rabotnov Yu. N., Elementy nasledstvennoi mekhaniki tverdykh tel, Nauka, M., 1977 | MR

[8] Gurtin M. E., Pipkin A. C., “General theory of heat conduction with finite wave speed”, Arch. Ration. Mech. Anal., 31 (1968), 113–126 | DOI | MR | Zbl

[9] Lykov A. V., Problema teplo- i massoperenosa, Nauka i tekhnika, Minsk, 1976, 9–82

[10] Amendola G., Fabrizio M., Golden J. M., Thermodynamics of Materials with Memory. Theory and Applications, Springer, Dordrecht, 2012 | MR | Zbl

[11] Miller R. K., “An integrodifferencial equation for rigid heat conductors with memory”, J. Math. Anal., 66 (1978), 313–332 | DOI | MR | Zbl

[12] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[13] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016

[14] Vlasov V. V., Rautian N. A., “Spectral analysis of integrodifferential equations in Hilbert spaces”, J. Math. Sci., 239:5 (2019), 771–787 | DOI | MR | Zbl

[15] Vlasov V. V., Rautian N. A., “On Volterra integro-differential equations with kernels representable by Stieltjes integrals”, Different. Equ., 57:4 (2021), 517–532 | DOI | MR | Zbl

[16] Rautian N. A., “Semigroups generated by Volterra integro-differential equations”, Different. Equ., 56:9 (2020), 1193–1211 | DOI | MR | Zbl

[17] Rautian N. A., “On the properties of semigroups generated by Volterra integro-differential equations with kernels representable by Stieltjes integrals”, Different. Equ., 57:9 (2021), 1231–1248 | DOI | MR | Zbl

[18] Eremenko A., Ivanov S., “Spectra of the Gurtin–Pipkin type equations”, SIAM J. Math. Anal., 43 (2011), 2296–2306 | DOI | MR | Zbl

[19] Dafermos C. M., “Asymptotic stability in viscoelasticity”, Arch. Ration. Mech. Anal., 37 (1970), 297–308 | DOI | MR | Zbl

[20] Engel K.-J., Nagel R., One-Parameter Semigroup for Linear Evolution Equations, Springer, Berlin, 1999 | MR

[21] Pata V., “Stability and exponential stability in linear viscoelasticity”, Milan J. Math., 77 (2009), 333–360 | DOI | MR | Zbl

[22] Smirnov V. I., Kurs vysshei matematiki, v. 5, Nauka, M., 1974 | MR

[23] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[24] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, 1954 | MR