@article{TSP_2023_33_33_a12,
author = {N. L. Poliakov and M. V. Shamolin},
title = {{\CYRO}{\cyrb} {\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrm} {\cyrk}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyre} {\cyrn}{\cyre}{\cyrl}{\cyro}{\cyrk}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyrp}{\cyrr}{\cyra}{\cyrv}{\cyri}{\cyrl} {\cyra}{\cyrg}{\cyrr}{\cyre}{\cyrg}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyrya}},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {271--288},
year = {2023},
volume = {33},
number = {33},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a12/}
}
N. L. Poliakov; M. V. Shamolin. Об одном классе нелокальных правил агрегирования. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 33 (2023) no. 33, pp. 271-288. http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a12/
[1] Shelah S., “On the Arrow property”, Adv. Appl. Math., 34 (2005), 217–251 | DOI | MR | Zbl
[2] Polyakov N. L., Shamolin M. V., “O zamknutykh simmetrichnykh klassakh funktsii, sokhranyayuschikh lyuboi odnomestnyi predikat”, Vestn. SamGU. Estestvennonauchn. ser., 2013, no. 6(107), 61–73
[3] Polyakov N. L., Shamolin M. V., “On a generalization of Arrow's impossibility theorem”, Dokl. Math., 89:3 (2014), 290–292 | DOI | MR | Zbl
[4] Polyakov N., Functional Galois connections and a classification of symmetric conservative clones with a finite carrier, 2018, arXiv: 1810.02945 | MR
[5] Polyakov N. L., Shamolin M. V., “On dynamic aggregation systems”, J. Math. Sci., 244:2 (2020), 278–293 | DOI | MR | Zbl
[6] Polyakov N. L., Shamolin M. V., “Teoremy o reduktsii v teorii kollektivnogo vybora”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, 2020, 46–51 | DOI
[7] Brandt F., Conitzer V., Endriss U. et al., Handbook of Computational Social Choice, Cambridge Univ. Press, Cambridge, 2016 | Zbl
[8] Aleskerov F. T., Arrovian Aggregation Models, Springer, 1999 | MR
[9] Aleskerov F. T., “Local Aggregation Models”, Automat. Remote Control, 2000, no. 10, 3–26 | MR | Zbl
[10] Kemeny J., “Mathematics without numbers”, Daedalus, 88:3 (1959), 577–591
[11] Maskin E., Dasgupta P., “The fairest vote of all”, Sci. Am., 290:3 (2004), 64–69
[12] Schulze M., “A new monotonic, clone-independent, reversal symmetric, and Condorcet-consistent single-winner election method”, Soc. Choice Welfare, 36:2 (2011), 267–303 | DOI | MR | Zbl
[13] Subochev A., Aleskerov F., Pislyakov V., “Ranking journals using social choice theory methods: A novel approach in bibliometrics”, J. Informetrics, 12:2 (2018), 416–429 | DOI
[14] Arrow K., Choice and Individual Values, 2 edition, Yale University Press, 1963 | MR
[15] Aizerman M., Aleskerov F., “Voting operators in the space of choice functions”, Math. Soc. Sci., 11:3 (1986), 201–242 | DOI | MR | Zbl
[16] Smith J. H., “Aggregation of preferences with variable electorate”, Econometrica, 41:6 (1973), 1027–1041 | DOI | MR | Zbl
[17] Schwartz T., “On the possibility of rational policy evaluation”, Theory Decision, 1 (1970), 89–106 | DOI
[18] Mahajne M., Nitzan S., Volij O., “Level $r$ consensus and stable social choice”, Soc. Choice Welfare, 2015, no. 6, 805–817 | DOI | MR | Zbl
[19] Polyakov N. L., Note on level $r$ consensus, 2016, arXiv: 1606.04816