Об одном классе нелокальных правил агрегирования
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 33 (2023) no. 33, pp. 271-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TSP_2023_33_33_a12,
     author = {N. L. Poliakov and M. V. Shamolin},
     title = {{\CYRO}{\cyrb} {\cyro}{\cyrd}{\cyrn}{\cyro}{\cyrm} {\cyrk}{\cyrl}{\cyra}{\cyrs}{\cyrs}{\cyre} {\cyrn}{\cyre}{\cyrl}{\cyro}{\cyrk}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrh} {\cyrp}{\cyrr}{\cyra}{\cyrv}{\cyri}{\cyrl} {\cyra}{\cyrg}{\cyrr}{\cyre}{\cyrg}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyrya}},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {271--288},
     year = {2023},
     volume = {33},
     number = {33},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a12/}
}
TY  - JOUR
AU  - N. L. Poliakov
AU  - M. V. Shamolin
TI  - Об одном классе нелокальных правил агрегирования
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2023
SP  - 271
EP  - 288
VL  - 33
IS  - 33
UR  - http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a12/
LA  - ru
ID  - TSP_2023_33_33_a12
ER  - 
%0 Journal Article
%A N. L. Poliakov
%A M. V. Shamolin
%T Об одном классе нелокальных правил агрегирования
%J Trudy Seminara im. I.G. Petrovskogo
%D 2023
%P 271-288
%V 33
%N 33
%U http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a12/
%G ru
%F TSP_2023_33_33_a12
N. L. Poliakov; M. V. Shamolin. Об одном классе нелокальных правил агрегирования. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 33 (2023) no. 33, pp. 271-288. http://geodesic.mathdoc.fr/item/TSP_2023_33_33_a12/

[1] Shelah S., “On the Arrow property”, Adv. Appl. Math., 34 (2005), 217–251 | DOI | MR | Zbl

[2] Polyakov N. L., Shamolin M. V., “O zamknutykh simmetrichnykh klassakh funktsii, sokhranyayuschikh lyuboi odnomestnyi predikat”, Vestn. SamGU. Estestvennonauchn. ser., 2013, no. 6(107), 61–73

[3] Polyakov N. L., Shamolin M. V., “On a generalization of Arrow's impossibility theorem”, Dokl. Math., 89:3 (2014), 290–292 | DOI | MR | Zbl

[4] Polyakov N., Functional Galois connections and a classification of symmetric conservative clones with a finite carrier, 2018, arXiv: 1810.02945 | MR

[5] Polyakov N. L., Shamolin M. V., “On dynamic aggregation systems”, J. Math. Sci., 244:2 (2020), 278–293 | DOI | MR | Zbl

[6] Polyakov N. L., Shamolin M. V., “Teoremy o reduktsii v teorii kollektivnogo vybora”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, 2020, 46–51 | DOI

[7] Brandt F., Conitzer V., Endriss U. et al., Handbook of Computational Social Choice, Cambridge Univ. Press, Cambridge, 2016 | Zbl

[8] Aleskerov F. T., Arrovian Aggregation Models, Springer, 1999 | MR

[9] Aleskerov F. T., “Local Aggregation Models”, Automat. Remote Control, 2000, no. 10, 3–26 | MR | Zbl

[10] Kemeny J., “Mathematics without numbers”, Daedalus, 88:3 (1959), 577–591

[11] Maskin E., Dasgupta P., “The fairest vote of all”, Sci. Am., 290:3 (2004), 64–69

[12] Schulze M., “A new monotonic, clone-independent, reversal symmetric, and Condorcet-consistent single-winner election method”, Soc. Choice Welfare, 36:2 (2011), 267–303 | DOI | MR | Zbl

[13] Subochev A., Aleskerov F., Pislyakov V., “Ranking journals using social choice theory methods: A novel approach in bibliometrics”, J. Informetrics, 12:2 (2018), 416–429 | DOI

[14] Arrow K., Choice and Individual Values, 2 edition, Yale University Press, 1963 | MR

[15] Aizerman M., Aleskerov F., “Voting operators in the space of choice functions”, Math. Soc. Sci., 11:3 (1986), 201–242 | DOI | MR | Zbl

[16] Smith J. H., “Aggregation of preferences with variable electorate”, Econometrica, 41:6 (1973), 1027–1041 | DOI | MR | Zbl

[17] Schwartz T., “On the possibility of rational policy evaluation”, Theory Decision, 1 (1970), 89–106 | DOI

[18] Mahajne M., Nitzan S., Volij O., “Level $r$ consensus and stable social choice”, Soc. Choice Welfare, 2015, no. 6, 805–817 | DOI | MR | Zbl

[19] Polyakov N. L., Note on level $r$ consensus, 2016, arXiv: 1606.04816