On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 220-238
Voir la notice de l'article provenant de la source Math-Net.Ru
For parabolic equations of the form
$$ \frac{\partial u}{\partial t}- \sum_{i,j=1}^n a_{ij} (x, u) \frac{\partial^2 u}{\partial x_i \partial x_j} + f (x, u, D u) = 0 \ \ \text{in}\ \ {\mathbb R}_+^{n+1}, $$
where ${\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty)$, $n \ge 1$, $D = (\partial / \partial x_1, \ldots, \partial / \partial x_n)$, and $f$ satisfies some constraints, we obtain conditions that ensure the convergence of any its solution to zero as $t \to \infty$.
@article{TSP_2019_32_32_a9,
author = {A. A. Kon'kov},
title = {On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {220--238},
publisher = {mathdoc},
volume = {32},
number = {32},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/}
}
TY - JOUR AU - A. A. Kon'kov TI - On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives JO - Trudy Seminara im. I.G. Petrovskogo PY - 2019 SP - 220 EP - 238 VL - 32 IS - 32 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/ LA - ru ID - TSP_2019_32_32_a9 ER -
A. A. Kon'kov. On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 220-238. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/