On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 220-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For parabolic equations of the form $$ \frac{\partial u}{\partial t}- \sum_{i,j=1}^n a_{ij} (x, u) \frac{\partial^2 u}{\partial x_i \partial x_j} + f (x, u, D u) = 0 \ \ \text{in}\ \ {\mathbb R}_+^{n+1}, $$ where ${\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty)$, $n \ge 1$, $D = (\partial / \partial x_1, \ldots, \partial / \partial x_n)$, and $f$ satisfies some constraints, we obtain conditions that ensure the convergence of any its solution to zero as $t \to \infty$.
@article{TSP_2019_32_32_a9,
     author = {A. A. Kon'kov},
     title = {On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {220--238},
     year = {2019},
     volume = {32},
     number = {32},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2019
SP  - 220
EP  - 238
VL  - 32
IS  - 32
UR  - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/
LA  - ru
ID  - TSP_2019_32_32_a9
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives
%J Trudy Seminara im. I.G. Petrovskogo
%D 2019
%P 220-238
%V 32
%N 32
%U http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/
%G ru
%F TSP_2019_32_32_a9
A. A. Kon'kov. On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 220-238. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/

[1] Fridman A., “Convergence of solutions of parabolic equations to a steady state”, J. Math. Mech., 8 (1959), 57–76 | MR

[2] Galaktionov V. A., Peletier L. A., “Asymptotic behavior near finite-time extinction for the fast diffusion equation”, Arch. Rational Mech. Anal., 139 (1997), 83–98 | DOI | MR | Zbl

[3] Gladkov A. L., “Self-similar blow-up solutions of the KPZ equation”, Int. J. Differ. Equ., 2015, 1–4 | MR

[4] Gladkov A. L., Guedda M., Kersner R., “A KPZ growth model with possibly unbounded data: correctness and blow-up”, Nonlinear Anal., 68:7 (2008), 2079–2091 | DOI | MR | Zbl

[5] Gmira A., Veron L., “Large time behaviour of the solutions of a semilinear parabolic equation in ${\mathbb R}^n$”, J. Differ. Equ., 53 (1984), 258–276 | DOI | MR | Zbl

[6] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971

[7] Kondratev V. A., “Ob asimptoticheskikh svoistvakh peshenii polulineinykh ellipticheskikh uravnenii vtorogo poryadka v tsilindricheskikh oblastyakh”, Tr. semin. im. I. G. Petrovskogo, 25, 2006, 98–111 | Zbl

[8] Kondratiev V. A., Veron L., “Asymptotic behavior of solutions of some nonlinear parabolic or elliptic equations”, Asymptotic Anal., 14 (1997), 117–156 | DOI | MR | Zbl

[9] Konkov A. A., “Ob otsutstvii reshenii u odnogo klassa nedivergentnykh ellipticheskikh neravenstv”, Zhurn. vychisl. matem. i matem. fiz., 57:3 (2017), 448–458 | DOI | Zbl

[10] Konkov A. A., “O resheniyakh neavtonomnykh obyknovennykh differentsialnykh uravnenii”, Izv. RAN. Ser. Matem., 65:2 (2001), 81–126 | DOI | MR | Zbl

[11] Kon'kov A. A., “On the asymptotic behaviour of solutions of nonlinear parabolic equations”, Proc. Royal Soc. Edinburgh, 136 (2006), 365–384 | DOI | MR | Zbl