On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 220-238

Voir la notice de l'article provenant de la source Math-Net.Ru

For parabolic equations of the form $$ \frac{\partial u}{\partial t}- \sum_{i,j=1}^n a_{ij} (x, u) \frac{\partial^2 u}{\partial x_i \partial x_j} + f (x, u, D u) = 0 \ \ \text{in}\ \ {\mathbb R}_+^{n+1}, $$ where ${\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty)$, $n \ge 1$, $D = (\partial / \partial x_1, \ldots, \partial / \partial x_n)$, and $f$ satisfies some constraints, we obtain conditions that ensure the convergence of any its solution to zero as $t \to \infty$.
@article{TSP_2019_32_32_a9,
     author = {A. A. Kon'kov},
     title = {On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {220--238},
     publisher = {mathdoc},
     volume = {32},
     number = {32},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2019
SP  - 220
EP  - 238
VL  - 32
IS  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/
LA  - ru
ID  - TSP_2019_32_32_a9
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives
%J Trudy Seminara im. I.G. Petrovskogo
%D 2019
%P 220-238
%V 32
%N 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/
%G ru
%F TSP_2019_32_32_a9
A. A. Kon'kov. On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 220-238. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a9/