Estimates for the first eigenvalue of the Sturm--Liouville problem with potentials in weighted spaces
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 162-190
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Sturm–Liouville problem on the interval $[0,1]$ with the Dirichlet boundary conditions and a weighted integral condition on the potential function, which allows the potential to have singularities of different orders at the end-points. For some values of the parameters of the weight functions, estimates are obtained for the first eigenvalue of this problem, and a method is proposed for finding precise bounds for this eigenvalue in some cases.
@article{TSP_2019_32_32_a7,
author = {S. S. Ezhak and M. Yu. Telnova},
title = {Estimates for the first eigenvalue of the {Sturm--Liouville} problem with potentials in weighted spaces},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {162--190},
publisher = {mathdoc},
volume = {32},
number = {32},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a7/}
}
TY - JOUR AU - S. S. Ezhak AU - M. Yu. Telnova TI - Estimates for the first eigenvalue of the Sturm--Liouville problem with potentials in weighted spaces JO - Trudy Seminara im. I.G. Petrovskogo PY - 2019 SP - 162 EP - 190 VL - 32 IS - 32 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a7/ LA - ru ID - TSP_2019_32_32_a7 ER -
%0 Journal Article %A S. S. Ezhak %A M. Yu. Telnova %T Estimates for the first eigenvalue of the Sturm--Liouville problem with potentials in weighted spaces %J Trudy Seminara im. I.G. Petrovskogo %D 2019 %P 162-190 %V 32 %N 32 %I mathdoc %U http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a7/ %G ru %F TSP_2019_32_32_a7
S. S. Ezhak; M. Yu. Telnova. Estimates for the first eigenvalue of the Sturm--Liouville problem with potentials in weighted spaces. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 162-190. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a7/