Estimates for the first eigenvalue of the Sturm–Liouville problem with potentials in weighted spaces
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 162-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Sturm–Liouville problem on the interval $[0,1]$ with the Dirichlet boundary conditions and a weighted integral condition on the potential function, which allows the potential to have singularities of different orders at the end-points. For some values of the parameters of the weight functions, estimates are obtained for the first eigenvalue of this problem, and a method is proposed for finding precise bounds for this eigenvalue in some cases.
@article{TSP_2019_32_32_a7,
     author = {S. S. Ezhak and M. Yu. Telnova},
     title = {Estimates for the first eigenvalue of the {Sturm{\textendash}Liouville} problem with potentials in weighted spaces},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {162--190},
     year = {2019},
     volume = {32},
     number = {32},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a7/}
}
TY  - JOUR
AU  - S. S. Ezhak
AU  - M. Yu. Telnova
TI  - Estimates for the first eigenvalue of the Sturm–Liouville problem with potentials in weighted spaces
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2019
SP  - 162
EP  - 190
VL  - 32
IS  - 32
UR  - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a7/
LA  - ru
ID  - TSP_2019_32_32_a7
ER  - 
%0 Journal Article
%A S. S. Ezhak
%A M. Yu. Telnova
%T Estimates for the first eigenvalue of the Sturm–Liouville problem with potentials in weighted spaces
%J Trudy Seminara im. I.G. Petrovskogo
%D 2019
%P 162-190
%V 32
%N 32
%U http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a7/
%G ru
%F TSP_2019_32_32_a7
S. S. Ezhak; M. Yu. Telnova. Estimates for the first eigenvalue of the Sturm–Liouville problem with potentials in weighted spaces. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 162-190. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a7/

[1] Egorov Yu. V,, Kondratev V. A., “Ob otsenkakh pervogo sobstvennogo znacheniya v nekotorykh zadachakh Shturma–Liuvillya”, UMN, 51:3 (1996), 73–144 | DOI | MR | Zbl

[2] Egorov Y., Kondratiev V., On Spectral Theory of Elliptic Operators. Operator Theory: Advances and Applications, Birkhäuser, Basel, 1996 | MR

[3] Vinokurov V. A., Sadovnichii V. A., “O granitsakh izmeneniya sobstvennogo znacheniya pri izmenenii potentsiala”, Dokl. RAN, 392:5 (2003), 592–597 | MR | Zbl

[4] Ezhak S. S., Karulina E. S., Telnova M. Yu., “Otsenki pervogo sobstvennogo znacheniya nekotorykh zadach Shturma–Liuvillya s integralnym usloviem na potentsial”, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, ed. I. V. Astashova, YuNITI-DANA, M., 2012, 506–647

[5] Ezhak S., “On estimates for the first eigenvalue of the Sturm–Liouville problem with dirichlet boundary conditions and integral condition”, Differential and Difference Equations with Applications, Springer Proc. Math. Stat., 47, Springer, New York, 2013, 387–394 | DOI | MR | Zbl

[6] Telnova M. Yu., “Ob otsenkakh sverkhu pervogo sobstvennogo znacheniya zadachi Shturma–Liuvillya s vesovym integralnym usloviem”, Vestn. SamGU, 6 (128) (2015), 124–129

[7] Telnova M., “Some estimates for the first eigenvalue of the Sturm–Liouville problem with a weight integral condition”, Math. Bohem., 137:2 (2012), 229–238 | MR | Zbl

[8] Kuralbaeva K. Z., “Ob otsenkakh pervogo sobstvennogo znacheniya operatora Shturma–Liuvillya”, Differents. uravn., 32:6 (1996), 852–853

[9] Vladimirov A. A., “Majorants for eigenvalues of Sturm–Liouville problems with potentials from balls of weighted spaces”, Mat. Sb., 208:9 (2017), 42–55 | DOI | MR | Zbl

[10] Vladimirov A. A., Ob odnoi apriornoi mazhorante sobstvennykh znachenii zadach Shturma–Liuvillya, arXiv: 1602.05228 [math.CA]

[11] Ezhak S. S., Telnova M. Yu., “Otsenki sverkhu pervogo sobstvennogo znacheniya zadachi Shturma–Liuvillya s vesovym integralnym usloviem”, Funktsionalno-differentsialnye uravneniya: teoriya i prilozheniya, PNIPU, Perm, 2018, 97–107

[12] Ezhak S. S., Telnova M. Yu., “On one upper estimate for the first eigenvalue of a Sturm–Liouville problem with Dirichlet boundary conditions and a weighted integral condition”, Mem. Diff. Equ. Math. Phys., 73 (2018), 55–64 | MR | Zbl

[13] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[14] Osmolovskii V. G., Nelineinaya zadacha Shturma–Liuvillya, Izd-vo SPbGU, SPb., 2003

[15] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR