Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 111-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article is aimed at studying the Cauchy problem for a first-order quasi-linear equation with a flow function of power type and unbounded initial data of power or exponential type. It is known that the Cauchy problem in the class of locally bounded functions may have several solutions. We describe all entropy solutions of this problem, which can be represented in a special form. It is shown that after the first discontinuity line (shock wave), these solutions eventually exhibit the same behavior, and their nonuniqueness actually amounts to the choice of the first shock wave.
@article{TSP_2019_32_32_a5,
     author = {A. Yu. Goritsky and L. V. Gargyants},
     title = {Nonuniqueness of unbounded solutions of the {Cauchy} problem for scalar conservation laws},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {111--133},
     year = {2019},
     volume = {32},
     number = {32},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a5/}
}
TY  - JOUR
AU  - A. Yu. Goritsky
AU  - L. V. Gargyants
TI  - Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2019
SP  - 111
EP  - 133
VL  - 32
IS  - 32
UR  - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a5/
LA  - ru
ID  - TSP_2019_32_32_a5
ER  - 
%0 Journal Article
%A A. Yu. Goritsky
%A L. V. Gargyants
%T Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws
%J Trudy Seminara im. I.G. Petrovskogo
%D 2019
%P 111-133
%V 32
%N 32
%U http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a5/
%G ru
%F TSP_2019_32_32_a5
A. Yu. Goritsky; L. V. Gargyants. Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 111-133. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a5/

[1] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, DAN SSSR, 187:1 (1969), 29–32 | Zbl

[2] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | Zbl

[3] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, Uch. posob., Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, 1999

[4] Oleinik O. A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, DAN SSSR, 95:3 (1954), 451–454 | Zbl

[5] Panov E. Yu., “O klassakh korrektnosti lokalno ogranichennykh obobschennykh entropiinykh reshenii zadachi Koshi dlya kvazilineinykh uravnenii pervogo poryadka”, Fundament. i prikl. matem., 12:5 (2006), 175–188

[6] Goritskii A. Yu., “Postroenie neogranichennogo entropiinogo resheniya zadachi Koshi so schetnym chislom udarnykh voln”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1999, no. 2, 3–6 | MR

[7] Goritsky A. Yu., Panov E. Yu., “Example of nonuniqueness of entropy solutions in the class of locally bounded functions”, Russ. J. Math. Phys., 6:4 (1999), 492–494 | MR | Zbl

[8] Goritskii A. Yu., Panov E. Yu., “O lokalno ogranichennykh obobschennykh entropiinykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Tr. MIRAN im. V. A. Steklova, 236, no. 5, 2002, 120–133 | MR

[9] Gargyants L. V., “Lokalno ogranichennye resheniya odnomernykh zakonov sokhraneniya”, Differents. uravn., 52:4 (2016), 481–489 | DOI | MR | Zbl

[10] Gargyants L. V., “O lokalno ogranichennykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka so stepennoi funktsiei potoka”, Matem. zametki, 2018 (to appear)

[11] Gargyants L. V., “Example of nonexistence of a positive generalized entropy solution of a Cauchy problem with unbounded positive initial data”, Russ. J. Math. Phys., 24:3 (2017), 412–414 | DOI | MR | Zbl