Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 111-133
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is aimed at studying the Cauchy problem for a first-order quasi-linear equation with a flow function of power type and unbounded initial data of power or exponential type. It is known that the Cauchy problem in the class of locally bounded functions may have several solutions. We describe all entropy solutions of this problem, which can be represented in a special form. It is shown that after the first discontinuity line (shock wave), these solutions eventually exhibit the same behavior, and their nonuniqueness actually amounts to the choice of the first shock wave.
@article{TSP_2019_32_32_a5,
author = {A. Yu. Goritsky and L. V. Gargyants},
title = {Nonuniqueness of unbounded solutions of the {Cauchy} problem for scalar conservation laws},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {111--133},
publisher = {mathdoc},
volume = {32},
number = {32},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a5/}
}
TY - JOUR AU - A. Yu. Goritsky AU - L. V. Gargyants TI - Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws JO - Trudy Seminara im. I.G. Petrovskogo PY - 2019 SP - 111 EP - 133 VL - 32 IS - 32 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a5/ LA - ru ID - TSP_2019_32_32_a5 ER -
%0 Journal Article %A A. Yu. Goritsky %A L. V. Gargyants %T Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws %J Trudy Seminara im. I.G. Petrovskogo %D 2019 %P 111-133 %V 32 %N 32 %I mathdoc %U http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a5/ %G ru %F TSP_2019_32_32_a5
A. Yu. Goritsky; L. V. Gargyants. Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 111-133. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a5/