Plane rotability exponents of a linear system of differential equations
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 325-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For a linear system of ordinary differential equations, we examine various exponents of Lyapunov type characterizing the rotation of solutions in some specially selected planes of solutions, namely, the planes in which this rotation is most prominent. A number of theorems are proved with regard to these new exponents being well-defined, their ordering and their relation to previously known Lyapunov characteristics of solutions, their spectra in the case of two-dimensional systems, and their relation to the eigenvalues of the operators associated with autonomous systems.
@article{TSP_2019_32_32_a13,
     author = {I. N. Sergeev},
     title = {Plane rotability exponents of a linear system of differential equations},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {325--348},
     year = {2019},
     volume = {32},
     number = {32},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a13/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Plane rotability exponents of a linear system of differential equations
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2019
SP  - 325
EP  - 348
VL  - 32
IS  - 32
UR  - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a13/
LA  - ru
ID  - TSP_2019_32_32_a13
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Plane rotability exponents of a linear system of differential equations
%J Trudy Seminara im. I.G. Petrovskogo
%D 2019
%P 325-348
%V 32
%N 32
%U http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a13/
%G ru
%F TSP_2019_32_32_a13
I. N. Sergeev. Plane rotability exponents of a linear system of differential equations. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 325-348. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a13/

[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966

[2] Izobov N. A., Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006

[3] Sergeev I. N., “Lyapunovskie kharakteristiki koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Tr. semin. im. I. G. Petrovskogo, 31, 2016, 177–219

[4] Sergeev I. N., “Kharakteristiki koleblemosti i bluzhdaemosti reshenii lineinoi differentsialnoi sistemy”, Izv. RAN. Ser. matem., 76:1 (2012), 149–172 | DOI | MR | Zbl

[5] Sergeev I. N., “Opredelenie i svoistva kharakteristicheskikh chastot lineinogo uravneniya”, Tr. semin. im. I. G. Petrovskogo, 25, 2006, 249–294 | Zbl

[6] Sergeev I. N., “Koleblemost i bluzhdaemost reshenii differentsialnogo uravneniya vtorogo poryadka”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhan., 2011, no. 6, 21–26 | Zbl

[7] Goritskii A. Yu., Fisenko T. N., “Kharakteristicheskie chastoty nulei summy dvukh garmonicheskikh kolebanii”, Differents. uravn., 48:4 (2012), 479–486 | MR | Zbl

[8] Smolentsev M. V., “Suschestvovanie periodicheskogo lineinogo differentsialnogo uravneniya tretego poryadka s kontinualnym spektrom chastot”, Differents. uravn., 48:11 (2012), 1571–1572

[9] Sergeev I. N., “Zamechatelnoe sovpadenie kharakteristik koleblemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Matem. sb., 204:1 (2013), 119–138 | DOI | MR | Zbl

[10] Stash A. Kh., “O suschestvennykh znacheniyakh kharakteristik koleblemosti reshenii lineinykh differentsialnykh uravnenii tretego poryadka”, Vestn. Adygeisk. gos. un-ta. Ser. Estestv.-matem. i tekhn. nauki, 2013, no. 2 (119), 9–23

[11] Sergeev I. N., “Svoistva kharakteristicheskikh chastot lineinogo uravneniya proizvolnogo poryadka”, Tr. semin. im. I. G. Petrovskogo, 29, 2013, 414–442

[12] Sergeev I. N., “Kharakteristiki povorachivaemosti reshenii differentsialnykh sistem”, Differents. uravn., 50:10 (2014), 1353–1361 | DOI | Zbl

[13] Sergeev I. N., “Mnimye pokazateli lineinogo uravneniya”, Differents. uravn., 50:11 (2014), 1565–1566 | DOI | MR | Zbl

[14] Sergeev I. N., “Tipichnye znacheniya obobschennykh pokazatelei bluzhdaemosti avtonomnykh sistem”, Differents. uravn., 50:12 (2014), 1678–1679 | DOI | Zbl

[15] Mitsenko V. V., “Spektr verkhnego pokazatelya bluzhdaemosti reshenii dvumernykh treugolnykh differentsialnykh sistem”, Differents. uravn., 50:10 (2014), 1347–1352 | DOI | MR | Zbl

[16] Mitsenko V. V., “O bluzhdaemosti reshenii dvumernykh diagonalnykh i treugolnykh differentsialnykh sistem”, Tr. semin. im. I. G. Petrovskogo, 30, 2014, 221–241

[17] Burlakov D. S., Tsoi S. V., “Sovpadenie polnoi i vektornoi chastot reshenii lineinoi avtonomnoi sistemy”, Tr. semin. im. I. G. Petrovskogo, 30, 2014, 75–93

[18] Lysak M. D., “Tochnye otsenki skorosti bluzhdaniya reshenii lineinykh sistem vtorogo poryadka”, Tr. semin. im. I. G. Petrovskogo, 30, 2014, 184–212

[19] Sergeev I. N., “Pokazateli koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Matem. zametki, 99:5 (2016), 732–751 | DOI | MR | Zbl

[20] Sergeev I. N., “Polnyi nabor sootnoshenii mezhdu pokazatelyami koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Izv. In-ta matem. i inform. UdGU, 2015, no. 2 (46), 171–183 | Zbl

[21] Burlakov D. S., “Spektr skorostei bluzhdaniya neortogonalnogo proizvedeniya dvukh povorotov”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2015, no. 2, 49–53 | MR | Zbl

[22] Burlakov D. S., “Otsenki skorosti bluzhdaniya reshenii lineinogo differentsialnogo uravneniya cherez ego koeffitsienty”, Differents. uravn., 52:8 (2016), 1003–1010 | DOI | MR | Zbl

[23] Lysak M. D., “Spektry skorosti i pokazatelya bluzhdaniya dlya lineinykh differentsialnykh sistem spetsialnogo vida”, Differents. uravn., 52:4 (2016), 539–544 | DOI | MR

[24] Sergeev I. N., “Koleblemost, vraschaemost i bluzhdaemost reshenii lineinykh differentsialnykh sistem”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obzory, 132, 2017, 117–121

[25] Barabanov E. A., Voidelevich A. S., “Spektry verkhnikh chastot Sergeeva nulei i znakov lineinykh differentsialnykh uravnenii”, Dokl. NAN Belarusi, 60:1 (2016), 24–31 | MR | Zbl

[26] Bykov V. V., “O berovskoi klassifikatsii chastot Cergeeva nulei i kornei reshenii lineinykh differentsialnykh uravnenii”, Differents. uravn., 52:4 (2016), 419–426 | DOI | MR

[27] Stash A. Kh., “Ob otsutstvii svoistva ostatochnosti u polnykh giperchastot reshenii differentsialnykh uravnenii tretego poryadka”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2017, no. 2, 65–68 | MR | Zbl

[28] Shishlyannikov E. M., “Primer differentsialnoi sistemy s kontinualnym spektrom pokazatelya bluzhdaemosti”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2017, no. 1, 64–68 | MR | Zbl

[29] Sergeev I. N., “Opredelenie pokazatelei ploskoi vraschaemosti differentsialnoi sistemy”, Differents. uravn., 51:6 (2015), 849–850

[30] Sergeev I. N., “Opredelenie i svoistva pokazatelei ploskoi vraschaemosti reshenii differentsialnoi sistemy”, Differents. uravn., 53:6 (2017), 851–853

[31] Sergeev I. N., “Spektr pokazatelei ploskoi vraschaemosti lineinoi avtonomnoi differentsialnoi sistemy”, Differents. uravn., 53:11 (2017), 1564–1566

[32] Sergeev I. N., “The plane rotatability indicators of a differential system”, Int. Workshop on the Qualitative Theory of Differential Equations, «QUALITDE-2016» (December 24–26, 2016), A. Razmadze Math. Inst. of I. Javakhishvili Tbilisi State Univ., Tbilisi, Georgia, 198–201