Rayleigh-benard instability: a study by the methods of Cahn–Hillard theory of nonequilibrium phase transitions
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 283-324 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article is an attempt to study the process of Rayleigh–Benard convective instability by the methods used for mathematical modeling of critical phenomena as nonequilibrium phase transitions in their initial stages of spinodal decomposition. We show that it is possible to extend the formalism adopted in the Cahn–Hillard theory of nonequilibrium phase transitions and perfected on problems of highgradient crystallization to other types of problems, in particular, those pertaining to the Rayleigh–Benard convective instability. For the initial stage of instability, a model is constructed that represents it as a nonequilibrium phase transition due to diffusive stratification. It is shown that the Gibbs free energy of deviation from the homogeneous state (with respect to the instability under consideration) is an analogue of the Ginsburg–Landau potential. Numerical experiments, by means of boundary temperature control, have been conducted with regard to self-excitation of the homogeneous state. Numerical analysis shows that convective flows may appear and proceed from regular forms (the so-called regular structures) to nonregular flows through a chaotization of the process. External factors, such as temperature growth, may lead to chaos via period doubling bifurcations.
@article{TSP_2019_32_32_a12,
     author = {E. V. Radkevich and E. A. Lukashev and O. A. Vasil'yeva},
     title = {Rayleigh-benard instability: a study by the methods of {Cahn{\textendash}Hillard} theory of nonequilibrium phase transitions},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {283--324},
     year = {2019},
     volume = {32},
     number = {32},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a12/}
}
TY  - JOUR
AU  - E. V. Radkevich
AU  - E. A. Lukashev
AU  - O. A. Vasil'yeva
TI  - Rayleigh-benard instability: a study by the methods of Cahn–Hillard theory of nonequilibrium phase transitions
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2019
SP  - 283
EP  - 324
VL  - 32
IS  - 32
UR  - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a12/
LA  - ru
ID  - TSP_2019_32_32_a12
ER  - 
%0 Journal Article
%A E. V. Radkevich
%A E. A. Lukashev
%A O. A. Vasil'yeva
%T Rayleigh-benard instability: a study by the methods of Cahn–Hillard theory of nonequilibrium phase transitions
%J Trudy Seminara im. I.G. Petrovskogo
%D 2019
%P 283-324
%V 32
%N 32
%U http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a12/
%G ru
%F TSP_2019_32_32_a12
E. V. Radkevich; E. A. Lukashev; O. A. Vasil'yeva. Rayleigh-benard instability: a study by the methods of Cahn–Hillard theory of nonequilibrium phase transitions. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 283-324. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a12/

[1] Lukashev E. A., Yakovlev N. N., Radkevich E. V., Palin V. V., “On the possibility of the Cahn–Hillard approach extension to the solution of gas dynamics problems (inner turbulence)”, 40th Intern. Conf. Applications of Mathematics in Engineering and Economics (AMEE-14), AIP Conf. Proc., 1631, 2014, 197–207 | DOI

[2] Lukashev E. A., Radkevich E. V., Yakovlev N. N., “O rekonstruktsii nachalnoi stadii vnutrennei turbulentnosti”, Nanostruktury, matem. fiz. i modelirovanie, 11:1 (2014), 73–99

[3] Yakovlev N. N., Lukashev E. A., Radkevich E. V., Palin V. V., “O paradigme vnutrennei turbulentnosti”, Vestn. Samarskogo gos. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 155–185 | DOI | MR | Zbl

[4] Lukashev E. A., Yakovlev N. N., Radkevich E. V., Vasil'yeva O. A., “On the theory of nonequilibrium phase transitions on the laminar-turbulent transition”, Nanostructures, Math. Phys. Modeling, 14:1 (2016), 5–40

[5] Lukashev E. A., Yakovlev N. N., Radkevich E. V., Vasileva O. A., “O problemakh laminarno-turbulentnogo perekhoda”, Dokl. RAN, 471:3 (2016), 1–5 | DOI | MR

[6] Radkevich E. V., Lukashev E. A., Sidorov M. I., Vasil'eva O. A., “Methods of nonlinear dynamics of nonequilibrium processes in fracture mechanics”, Euras. J. Math. Comput. Appl., 6:2 (2018), 43–80

[7] Radkevich E. V., Lukashev E. A., Yakovlev N. N., Vasil'yeva O. A., “Study of the Rayleigh–Benard instability by methods of the theory of nonequilibrium phase transitions in the Cahn–Hillard form”, Euras. J. Math. Comput. Appl., 5:2 (2017), 36–65

[8] Radkevich E. V., Lukashev E. A., Yakovlev N. N., Vasileva O. A., “O prirode konvektivnoi neustoichivosti Releya–Benara”, Dokl. RAN, 475:6 (2017), 1–6 | Zbl

[9] Yakovlev N. N., Lukashev E. A., Radkevich E. V., “Problemy rekonstruktsii protsessa napravlennoi kristallizatsii”, Dokl. RAN, 421:5 (2008), 625–629 | Zbl

[10] Lukashev E. A., Radkevich E. V., “Solidification and structuresation of instability zones”, Appl. Math., 1 (2010), 159–178 | DOI | MR

[11] Lukashev E. A., Radkevich E. V., Yakovlev N. N., “Strukturizatsiya zony neustoichivosti i kristallizatsiya”, Tr. semin. im. I. G. Petrovskogo, 28, 2011, 229–265 | MR

[12] Yakovlev N. N., Lukashev E. A., Radkevich E. V., “Issledovanie protsessa napravlennoi kristallizatsii metodom matematicheskoi rekonstruktsii”, Dokl. RAN, 445:4 (2012), 398–401 | Zbl

[13] Lukashev E. A., Radkevich E. V., Yakovlev N. N., “O vizualizatsii nachalnoi stadii kristallizatsii binarnykh splavov”, Nanostruktury, matem. fiz. i modelirovanie, 11:2 (2014), 5–36

[14] Lukashev E. A., Radkevich E. V., Sidorov M. I., Vasileva O. A., “Razrushenie konstruktsionnogo materiala — neravnovesnyi fazovyi perekhod”, Dokl. RAN, 480:2 (2018), 1–6 | MR

[15] Cahn J .W., Hillard J. E., “Free energy of a nonuniform system. I. Interfacial free energy”, J. Chem. Phys., 28:2 (1958), 258–271 | DOI

[16] Cahn J. W., Hillard J. E., “Free energy of a nonuniform system. II. Thermodynamic”, J. Chem. Phys., 30:5 (1958), 1121–1134 | DOI

[17] Cahn J.W., Hillard J. E., “Free energy of a nonuniform system. III. Nucleation in a two-component incommpressible fluid”, J. Chem. Phys., 31:3 (1959), 688–699 | DOI

[18] Cahn J. W., “Spinodal decomposition”, Acta Met., 9:8 (1961), 795–811 | DOI

[19] Cahn J. W., “Spinodal decomposition in cube crystalles”, Acta Met., 10:3 (1962), 179–183 | DOI

[20] Cahn J. W., “Coherent fluctuation and nucleation in isotropic solids”, Acta Met., 10:10 (1962), 907–913 | DOI | MR

[21] Cahn J. W., “Magnetic aging of spinodal alloys”, J. Appl. Phys., 34:12 (1963), 3581–3586 | DOI

[22] Cahn J. W., “Phase separation by spinodal decomposition in isotropic solids”, J. Chem. Phys., 42:1 (1965), 93–99 | DOI

[23] Cahn J. W., “Spinodal decomposion”, Trans. AIME, 242:2 (1968), 166–180

[24] Hoffman D. W., Cahn J. W., “A vector thermodynamics for anisotropic surfaces I: Fundamentals and applications to plane surface junctions”, Surface Sci., 31 (1972), 368–388 | DOI

[25] Gershuni G. Z., Zhukhovitskii E. M., Nepomnyashchii A. A., Stability of Convective Currents, Nauka, M., 1989 | MR

[26] Debai P., Izbrannye trudy, Nauka, L., 1987

[27] De Gennes P. G., “Dynamics of fluctuation and spinodal decomposition in polimer blends”, J. Chem. Phys., 72:9 (1980), 4756–4763 | DOI | MR | Zbl

[28] De Gennes P. G., “Dynamics of fluctuation and spinodal decomposition in polimer blends”, J. Chem. Phys., 74:5 (1981), 3086 | DOI | MR

[29] Proc. of the 8-th Pacific Rim International Congress on Advanced Materials and Processing (USA, Hawaii, 4–9 August, 2013)

[30] De Zhen P., Fizika zhidkikh kristallov, Mir, M., 1977

[31] De Zhen P., Idei skeilinga v fizike polimerov, Mir, M., 1982.

[32] Gorsse S., Pereira P. B., Decourt R., Sellier E., “Microstructure engineering design for thermoelectric materials: An approach to minimize thermal diffusivity”, Chem. Mater., 22 (2010), 988–993 | DOI

[33] Alekseev A. A., Kablov E. N., Petrushin N. V., Filonova E. V., Kochubei A. Ya., Lukina E. A., Zaitsev D. V., Treninkov I. A. Mekhanizm poteri ustoichivosti plasticheskogo techeniya monokristallov vysokorenievykh zharoprochnykh nikelevykh splavov, Tr. mezhdunar. nauch.-tekh. konf., posv. 100-letiyu so dnya rozhdeniya akademika S. T. Kishkina «Nauchnye idei S. T. Kishkina i sovremennoe materialovedenie», VIAM, M., 2006, 168–171

[34] Nikolis G., Prigozhin I., Samoorganizatsiya v neravnovesnykh sistemakh, Mir, M., 1979

[35] Tsigler G., Ekstremalnye printsipy termodinamiki neobratimykh protsessov i mekhanika sploshnoi sredy, Mir, M., 1966

[36] Martyushev L. M., Seleznev V. D., Printsip maksimalnosti proizvodstva entropii v fizike i smezhnykh oblastyakh, GOU VPO UGTU-UPI, Ekaterinburg, 2006

[37] Alekseev A. A., Kablov E. N., Petrushin N. V., Filonova E. V., Kochubei A. Ya., Lukina E. A., Zaitsev D. V., Treninkov I. A., “The mechanism of loss stability of the plastic flow of single crystals of high-temperature nickel alloys”, Proc. of the Int. Sci. and Tech. Conf. Dedicated to the 100th Anniversary of the birth of Academician S. T. Kishkin «Scientific ideas of S. T. Kishkin with modern materials science», VIAM, M., 2006, 168–171

[38] Prokudina L. A., Instability of Physical and Chemical Systems at Phase Transitions and Violation of Spatial Symmetry, Diss.\ldots Doct. Sci., South Ural State Univ. Press, Chelyabinsk, 1999

[39] Landau L. D., Lifshitz E. M., Theoretical Physics, v. 6, Hydrodynamics, Nauka, M., 1988 | MR

[40] Bratsun D.A., Dynamics of Multiphase Multicomponent Fluids with Elements of External Control, Diss.\ldots Doct. Sci., Perm. State Univ. Press, Perm, 2010

[41] Zyuzgin A. V., Experimental Study of Thermal Convection in Varying Force Fields, Diss.\ldots Doct. Sci., Perm. State Univ. Press, Perm, 2011

[42] Gershuni G. Z., Zhukhovitskii E. M., Convective Stability of Incompressible Fluid, Nauka, M., 1972

[43] Gershuni G. Z., Zhukhovitskii E. M., Nepomnyashchii A. A., Stability of Convective Currents, Nauka, M., 1989 | MR

[44] Betchov R., Criminale V., Questions of Hydrodynamic Stability, Mir, M., 1977

[45] Gol'dshtik M. A., Stern V. N., Hydrodynamic Stability and Turbulence, Nauka, Novosibirsk, 1977

[46] Joseph D., Stability of Fluid Motion, Mir, M., 1981 | MR

[47] Schlichting G., Turbulence Emergence, IL, M., 1962

[48] Shkadov V. J., Several Methods and Problems of Hydrodynamic Stability Theory, Proc. of the Inst. of Mechanics, Moscow State Univ., 25, Moscow State Univ., M., 1973

[49] Kachanov Y. S., Kozlov V. V, Levchenko V. J., The Emergence of Turbulence in the Boundary Layer, Nauka, Novosibirsk, 1982

[50] Getling A. V., Rayleigh–Benard Convection. The Structure and Dynamics, Editorial URSS, M., 1999 | MR

[51] Getling A. V., “Spatial patterns formed by Rayleigh–Benard convection”, UFN, 161:9, 1–80 | DOI | MR

[52] Samoilova A. E., Convective Stability of Horizontal Layers of Fluid with Deformable Boundary, Diss.\ldots Cand. Sci., Perm. State Univ. Press, Perm, 2015

[53] Andreev V. K., Bekezhanova V. B., Stability Nonisothermal Fluids, Sib. Fed. Univ., Krasnoyarsk, 2010

[54] Babskii V. G., Kopachevskii N. D., Myshkis A. D., Fluid Weightlessness, Nauka, M., 1976

[55] Pukhnachov V. V., “Model convective movement at low gravity”, Modelling Mechanics, 6:4 (1992), 47–56

[56] Zeytounian A. D., “The problem thermocapillary Benard–Marangoni instability”, UFN, 168:3 (1998), 259–286 | DOI | MR

[57] Andreev V. K., Zakhvataev V. S., Ryabitsky E. A., Thermocapillary Instability, Nauka; Sib. Izdat. Company, Novosibirsk, 2000 | MR

[58] Napolitano L. G., “Plane Marangoni–Poiseulle flow of two immiscible fluids”, Acta Astronaut., 7:4 (1980), 461–478 | DOI | Zbl

[59] VanHook S. J., Schatz M., Swift J., McCormick W., Swinney H., “Long-wavelength surface-tension-driven Benard convection: Experiment and theory”, J. Fluid Mech., 345 (1997), 45–78 | DOI | MR | Zbl

[60] Oron A., “Three-dimensional nonlinear dynamics of thin liquid films”, Phys. Rev. Lett., 85:10 (2000), 2108 | DOI | MR

[61] Oron A., Davis S. H., Bankoff S. G., “Long-scale evolution of thin liquid films”, Rev. Mod. Phys., 69:3 (1997), 931 | DOI | MR

[62] Barmakova T. V., Uvarova L. A., Barmakova N. M., “Dynamics thermocapillary instability in the non-isothermal evaporation of multicomponent liquid mixtures”, Complex Systems Processes, 2012, no. 2, 33–39

[63] Bograchev D. A., Preobrazenskii A. A., Davydov A. D., “Rayleigh–Benard convection in a plane layer of electrolyte solution between the two horizontal ion-selective membranes”, JPhCh, 82:11 (2008), 2154–2159

[64] Haken G., Synergetics, Mir, M., 1980 | MR

[65] Lukashev E. A., Yakovlev N. N., Radkevich E. V., Vasil'yeva O. A., “On the problems of the laminar-turbulent transition”, Rep. Russ. Acad. Sci., 471:3 (2016), 1–5 | MR

[66] Glansdorff P., Prigogine I., Thermodynamic Theory of Structure, Stability and Fluctuations, Mir, M., 1973 | MR | Zbl

[67] Danilov V. G., Omel'yanov G. A., Radkevich E. V., “Asymptotic solution of the conserved phase field system in the fast relaxation case”, Euras. J. Appl. Math., 9 (1998), 1–21 | DOI | MR | Zbl

[68] Danilov V. G., Omel'yanov G. A., Radkevich E. V., “Hugoniot-type conditions and weak solutions to the phase field system”, Euras. J. Appl. Math., 10 (1999), 55–77 | DOI | MR | Zbl

[69] Monin A. S., Yaglom A. M., Statistical Fluid Mechanics, v. 1, Science, M., 1965 | MR

[70] Tikhonov A. N., Camarskii A. A., Equations of Mathematical Physics, Nauka, M., 1966 | MR

[71] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, 7-e izd., Drofa, M., 2003