Harnack's inequality for the $p(x)$-Laplacian with a two-phase exponent $p(x)$
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 8-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One considers solutions of the $p(x)$-Laplacian equation in a neighborhood of a point $x_0$ on a hyperplane $\Sigma$. It is assumed that the exponent $p(x)$ possesses a logarithmic continuity modulus as $x_0$ is approached from one of the half-spaces separated by $\Sigma$. A version of the Harnack inequality is proved for these solutions.
@article{TSP_2019_32_32_a1,
     author = {Yu. A. Alkhutov and M. D. Surnachev},
     title = {Harnack's inequality for the $p(x)${-Laplacian} with a two-phase exponent $p(x)$},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {8--56},
     year = {2019},
     volume = {32},
     number = {32},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a1/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - M. D. Surnachev
TI  - Harnack's inequality for the $p(x)$-Laplacian with a two-phase exponent $p(x)$
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2019
SP  - 8
EP  - 56
VL  - 32
IS  - 32
UR  - http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a1/
LA  - ru
ID  - TSP_2019_32_32_a1
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A M. D. Surnachev
%T Harnack's inequality for the $p(x)$-Laplacian with a two-phase exponent $p(x)$
%J Trudy Seminara im. I.G. Petrovskogo
%D 2019
%P 8-56
%V 32
%N 32
%U http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a1/
%G ru
%F TSP_2019_32_32_a1
Yu. A. Alkhutov; M. D. Surnachev. Harnack's inequality for the $p(x)$-Laplacian with a two-phase exponent $p(x)$. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 32 (2019) no. 32, pp. 8-56. http://geodesic.mathdoc.fr/item/TSP_2019_32_32_a1/

[1] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 961–995 | MR

[2] Zhikov V. V., “Usrednenie nelineinykh funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 675–711 | MR

[3] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000 | MR | Zbl

[4] Zhikov V. V., “Otsenki tipa Meiersa dlya resheniya nelineinoi sistemy Stoksa”, Differents. uravn., 33:1 (1997), 107–114 | MR | Zbl

[5] Zhikov V. V., “Razreshimost trekhmernoi zadachi o termistore”, Tr. MIAN, 261, 2008, 101–114 | Zbl

[6] Diening L., Harjulehto P., Hästö P., Růžička M., Lebesgue and Sobolev Spaces with Variable Exponents, Lect. Notes Math., 2017, Springer, Berlin, 2011 | DOI | MR | Zbl

[7] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Birkhäuser, Basel; Springer, 2013 | MR | Zbl

[8] Kokilashvili V., Meshkii A., Rafeiro H., Samko S., Integral Operators in Non-Standard Function Spaces, v. 1, Operator Theory: Adv. Appl., 248, Variable Exponent Lebesgue and Amalgam Spaces, Birkhäuser, Basel; Springer, 2016 ; v. 2, Operator Theory: Adv. Appl., 249, Variable Exponent Hölder, Morrey–Campanato and Grand Spaces | MR | Zbl | Zbl

[9] Zhikov V., “On variational problems and nonlinear elliptic equations with nonstandard growth conditions”, J. Math. Sci., 173:5 (2011), 463–570 | DOI | MR | Zbl

[10] Zhikov V. V., O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta, Tamara Rozhkovskaya, Novosibirsk, 2017

[11] Zhikov V. V., “On Lavrentiev's phenomenon”, Russ. J. Math. Phys., 3:2 (1995), 249–269 | MR | Zbl

[12] Zhikov V. V., “O postanovke kraevykh zadach dlya integrantov vida $|\xi|^{\alpha(x)}$”, UMN, 41:4 (1986), 187–188

[13] Alkhutov Yu. A., “Neravenstvo Kharnaka i gelderovost reshenii nelineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Differents. uravn., 33:12 (1997), 1651–1660 | MR | Zbl

[14] Alkhutov Yu. A., Krasheninnikova O. A., “Nepreryvnost v granichnykh tochkakh reshenii kvazilineinykh ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Izv. RAN. Ser. matem., 68:6 (2004), 3–60 | DOI | MR | Zbl

[15] Krasheninnikova O. A., “O nepreryvnosti v tochke reshenii ellipticheskikh uravnenii s nestandartnym usloviem rosta”, Tr. MIAN, 236, 2002, 204–211 | MR | Zbl

[16] Alkhutov Yu. A., Krasheninnikova O. A., “O nepreryvnosti reshenii ellipticheskikh uravnenii s peremennym poryadkom nelineinosti”, Tr. MIAN, 261, 2008, 7–15 | Zbl

[17] Zhikov V. V., “O plotnosti gladkikh funktsii v prostranstve Soboleva–Orlicha”, Zap. nauchn. sem. POMI, 310, 2004, 67–81 | Zbl

[18] Zhikov V. V., Pastukhova S. E., “O povyshennoi summiruemosti gradienta reshenii ellipticheskikh uravnenii s peremennym pokazatelem nelineinosti”, Matem. sb., 199:2 (2008), 19–52 | DOI | MR | Zbl

[19] Acerbi E., Fusco N., “A transmission problem in the calculus of variations”, Calc. Var. Partial Differ. Equ., 2:1 (1994), 1–16 | DOI | MR | Zbl

[20] Alkhutov Yu. A., “O gelderovoi nepreryvnosti $p(x)$-garmonicheskikh funktsii”, Matem. sb., 196:2 (2005), 3–28 | DOI | Zbl

[21] Serrin J. Local behavior of solutions of quasilinear elliptic equations, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl

[22] Trudinger N. S., “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl

[23] Alkhutov Yu. A., Surnachev M. D., “O neravenstve Kharnaka dlya ellipticheskogo $(p,q)$-laplasiana”, Dokl. RAN, 470:6 (2016), 623–627 | DOI

[24] Alkhutov Yu. A., Surnachev M. D., “A Harnack inequality for a transmission problem with $p(x)$-Laplacian”, Appl. Anal., 2018 | DOI | MR

[25] Moser J., “On Harnack's theorem for elliptic differential equations”, Comm. Pure Appl. Math. 1961, 14, 577–591 | DOI | MR | Zbl

[26] Trudinger N. S., “On the regularity of generalized solutions of linear, non-unformly elliptic equations”, Arch. Ration. Mech. Anal., 42 (1971), 50–62 | DOI | MR | Zbl

[27] Alkhutov Yu. A., Surnachev M. D., “Regularity of a boundary point for the $p(x)$-Laplacian”, J. Math. Sci., 232:3 (2018), 206–231 | DOI | MR | Zbl