Two-sided semi-local smoothing splines
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 220-230

Voir la notice de l'article provenant de la source Math-Net.Ru

A semi-local smoothing spline of degree $n$ and class $C^p$ is a function defined on an interval, having $p$ continuous derivatives on that interval, and coinciding with a polynomial of degree $n$ on the subintervals forming its partition. The domain of each polynomial is a subinterval on which $m+1$ values of the approximated function are given, but in order to construct the polynomial, it is necessary to know $M\geqslant m+1$ values ($m$ and $M$ are determined by the class and the degree of the spline). The additional values can be borrowed from the adjacent subintervals. When constructing an $S$-spline in the periodic case, the problem of additional values is solved on the basis of periodicity, but in the nonperiodic case, one is expected to define the lacking values of a function beyond the domain. The present paper is aimed at nonperiodic two-sided $S$-splines whose construction does not require additional data.
@article{TSP_2016_31_31_a9,
     author = {D. A. Silaev and Zh. G. Ingtem and A. A. Filippov},
     title = {Two-sided semi-local smoothing splines},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {220--230},
     publisher = {mathdoc},
     volume = {31},
     number = {31},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a9/}
}
TY  - JOUR
AU  - D. A. Silaev
AU  - Zh. G. Ingtem
AU  - A. A. Filippov
TI  - Two-sided semi-local smoothing splines
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 220
EP  - 230
VL  - 31
IS  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a9/
LA  - ru
ID  - TSP_2016_31_31_a9
ER  - 
%0 Journal Article
%A D. A. Silaev
%A Zh. G. Ingtem
%A A. A. Filippov
%T Two-sided semi-local smoothing splines
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 220-230
%V 31
%N 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a9/
%G ru
%F TSP_2016_31_31_a9
D. A. Silaev; Zh. G. Ingtem; A. A. Filippov. Two-sided semi-local smoothing splines. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 220-230. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a9/