Two-sided semi-local smoothing splines
    
    
  
  
  
      
      
      
        
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 220-230
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A semi-local smoothing spline of degree $n$ and class $C^p$ is a function defined on an interval, having $p$ continuous derivatives on that interval, and coinciding with a polynomial of degree $n$ on the subintervals forming its partition. The domain of each polynomial is a subinterval on which $m+1$ values of the approximated function are given, but in order to construct the polynomial, it is necessary to know $M\geqslant m+1$ values ($m$ and $M$ are determined by the class and the degree of the spline). The additional values can be borrowed from the adjacent subintervals. When constructing an $S$-spline in the periodic case, the problem of additional values is solved on the basis of periodicity, but in the nonperiodic case, one is expected to define the lacking values of a function beyond the domain. The present paper is aimed at nonperiodic two-sided $S$-splines whose construction does not require additional data.
			
            
            
            
          
        
      @article{TSP_2016_31_31_a9,
     author = {D. A. Silaev and Zh. G. Ingtem and A. A. Filippov},
     title = {Two-sided semi-local smoothing splines},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {220--230},
     publisher = {mathdoc},
     volume = {31},
     number = {31},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a9/}
}
                      
                      
                    TY - JOUR AU - D. A. Silaev AU - Zh. G. Ingtem AU - A. A. Filippov TI - Two-sided semi-local smoothing splines JO - Trudy Seminara im. I.G. Petrovskogo PY - 2016 SP - 220 EP - 230 VL - 31 IS - 31 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a9/ LA - ru ID - TSP_2016_31_31_a9 ER -
D. A. Silaev; Zh. G. Ingtem; A. A. Filippov. Two-sided semi-local smoothing splines. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 220-230. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a9/
