@article{TSP_2016_31_31_a6,
author = {I. V. Romanov and A. S. Shamaev},
title = {Some problems of distributed and boundary control for systems with integral aftereffect},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {134--157},
year = {2016},
volume = {31},
number = {31},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a6/}
}
TY - JOUR AU - I. V. Romanov AU - A. S. Shamaev TI - Some problems of distributed and boundary control for systems with integral aftereffect JO - Trudy Seminara im. I.G. Petrovskogo PY - 2016 SP - 134 EP - 157 VL - 31 IS - 31 UR - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a6/ LA - ru ID - TSP_2016_31_31_a6 ER -
I. V. Romanov; A. S. Shamaev. Some problems of distributed and boundary control for systems with integral aftereffect. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 134-157. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a6/
[1] Sanchez-Palencia E., Non-Homogeneous Media and Vibration Theory, Springer, New York, 1980 | MR | Zbl
[2] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo Mosk. un-ta, M., 1990 | MR
[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR
[4] Kosmodemyanskii D. A., Shamaev A. S., “Spektralnye svoistva nekotorykh zadach mekhaniki silno neodnorodnykh sred”, SMFN, 17, 2006, 88–109
[5] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | DOI | MR | Zbl
[6] Gurtin M. E., Pipkin A. C., “Theory of heat conduction with finite wave speed”, Arch. Ration. Mech. Anal., 31 (1986), 113–126 | DOI | MR
[7] Vlasov V. V., Rautian N. A., Shamaev A. S., “Razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teplofizike i akustike”, Dokl. RAN, 434:1 (2010), 12–15 | Zbl
[8] Rautian N. A., “O strukture i svoistvakh reshenii integrodifferentsialnykh uravnenii, voznikayuschikh v teplofizike i akustike”, Matem. zametki, 90:3 (2011), 474–477 | DOI | MR
[9] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965 | MR
[10] Lions J. L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev., 30:1 (1988), 1–68 | DOI | MR | Zbl
[11] Chernousko F. L., “Ogranichennoe upravlenie v sistemakh s raspredelennymi parametrami”, Prikl. matematika i mekhanika, 56:5 (1992), 810–826 | MR | Zbl
[12] Romanov I., Shamaev A., “Exact controllability of the distributed system governed by string equation with memory”, J. Dynam. Control Systems, 19:4 (2013), 611–623 | DOI | MR | Zbl
[13] Romanov I., Shamaev A., Exact controllability of the distributed system governed by the wave equation with memory, arXiv: 1503.04461 | MR
[14] Romanov I., Shamaev A., “Noncontrollability to rest of the two-dimensional distributed system governed by the integrodifferential equation”, J. Optim. Theory Appl., 170:3 (2016), 772–782 | DOI | MR | Zbl
[15] Ivanov S., Pandofi L., “Heat equations with memory: lack of controllability to rest”, J. Math. Anal. Appl., 355:1 (2009), 1–11 | DOI | MR | Zbl
[16] Pandofi L., “The controllability of the Gurtin–Pipkin equations: a cosine operator approach”, Appl. Math. Optim., 52 (2005), 143–165 | DOI | MR
[17] Agmon S., “On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems”, Commun. Pure Appl. Math., 18:4 (1965), 627–663 | DOI | MR | Zbl
[18] Fursikov A. V., Imanuvilov O. Yu., “On exact boundary zero-controllability of two-dimensional Navier–Stokes equations”, Acta Appl. Math., 37 (1994), 67–76 | DOI | MR | Zbl
[19] Sedletskii A. M., “Negarmonicheskii analiz”, Funktsionalnyi analiz, Itogi nauki i tekhn. Ser.: Sovrem. mat. i ee pril., 96, 2006, 106–211
[20] Ivanov S., Sheronova T., Spectrum of the heat equation with memory, 2010, arXiv: 0912.1818
[21] Levinson N., Gap and Density Theorems, Amer. Math. Soc., New York, 1940 | MR