Some problems of distributed and boundary control for systems with integral aftereffect
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 134-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of exact control for a system described by an equation with integral “memory.” It is shown that, under certain conditions, this system can be brought to rest in finite time by distributed control bounded in absolute value, and, in a special one-dimensional case, by control applied to an end-point of the interval. We consider different types of kernels in the integral term of the equation and describe some relationships between problems of controllability of some hyperbolic and parabolic systems.
@article{TSP_2016_31_31_a6,
     author = {I. V. Romanov and A. S. Shamaev},
     title = {Some problems of distributed and boundary control for systems with integral aftereffect},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {134--157},
     year = {2016},
     volume = {31},
     number = {31},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a6/}
}
TY  - JOUR
AU  - I. V. Romanov
AU  - A. S. Shamaev
TI  - Some problems of distributed and boundary control for systems with integral aftereffect
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 134
EP  - 157
VL  - 31
IS  - 31
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a6/
LA  - ru
ID  - TSP_2016_31_31_a6
ER  - 
%0 Journal Article
%A I. V. Romanov
%A A. S. Shamaev
%T Some problems of distributed and boundary control for systems with integral aftereffect
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 134-157
%V 31
%N 31
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a6/
%G ru
%F TSP_2016_31_31_a6
I. V. Romanov; A. S. Shamaev. Some problems of distributed and boundary control for systems with integral aftereffect. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 134-157. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a6/

[1] Sanchez-Palencia E., Non-Homogeneous Media and Vibration Theory, Springer, New York, 1980 | MR | Zbl

[2] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo Mosk. un-ta, M., 1990 | MR

[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR

[4] Kosmodemyanskii D. A., Shamaev A. S., “Spektralnye svoistva nekotorykh zadach mekhaniki silno neodnorodnykh sred”, SMFN, 17, 2006, 88–109

[5] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | DOI | MR | Zbl

[6] Gurtin M. E., Pipkin A. C., “Theory of heat conduction with finite wave speed”, Arch. Ration. Mech. Anal., 31 (1986), 113–126 | DOI | MR

[7] Vlasov V. V., Rautian N. A., Shamaev A. S., “Razreshimost i spektralnyi analiz integrodifferentsialnykh uravnenii, voznikayuschikh v teplofizike i akustike”, Dokl. RAN, 434:1 (2010), 12–15 | Zbl

[8] Rautian N. A., “O strukture i svoistvakh reshenii integrodifferentsialnykh uravnenii, voznikayuschikh v teplofizike i akustike”, Matem. zametki, 90:3 (2011), 474–477 | DOI | MR

[9] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965 | MR

[10] Lions J. L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev., 30:1 (1988), 1–68 | DOI | MR | Zbl

[11] Chernousko F. L., “Ogranichennoe upravlenie v sistemakh s raspredelennymi parametrami”, Prikl. matematika i mekhanika, 56:5 (1992), 810–826 | MR | Zbl

[12] Romanov I., Shamaev A., “Exact controllability of the distributed system governed by string equation with memory”, J. Dynam. Control Systems, 19:4 (2013), 611–623 | DOI | MR | Zbl

[13] Romanov I., Shamaev A., Exact controllability of the distributed system governed by the wave equation with memory, arXiv: 1503.04461 | MR

[14] Romanov I., Shamaev A., “Noncontrollability to rest of the two-dimensional distributed system governed by the integrodifferential equation”, J. Optim. Theory Appl., 170:3 (2016), 772–782 | DOI | MR | Zbl

[15] Ivanov S., Pandofi L., “Heat equations with memory: lack of controllability to rest”, J. Math. Anal. Appl., 355:1 (2009), 1–11 | DOI | MR | Zbl

[16] Pandofi L., “The controllability of the Gurtin–Pipkin equations: a cosine operator approach”, Appl. Math. Optim., 52 (2005), 143–165 | DOI | MR

[17] Agmon S., “On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems”, Commun. Pure Appl. Math., 18:4 (1965), 627–663 | DOI | MR | Zbl

[18] Fursikov A. V., Imanuvilov O. Yu., “On exact boundary zero-controllability of two-dimensional Navier–Stokes equations”, Acta Appl. Math., 37 (1994), 67–76 | DOI | MR | Zbl

[19] Sedletskii A. M., “Negarmonicheskii analiz”, Funktsionalnyi analiz, Itogi nauki i tekhn. Ser.: Sovrem. mat. i ee pril., 96, 2006, 106–211

[20] Ivanov S., Sheronova T., Spectrum of the heat equation with memory, 2010, arXiv: 0912.1818

[21] Levinson N., Gap and Density Theorems, Amer. Math. Soc., New York, 1940 | MR