Behavior of stabilizing solutions of the Riccati equation
    
    
  
  
  
      
      
      
        
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 110-133
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Sufficient conditions are found for the existence of stabilizing solutions of the Riccati differential equation $y'=\bigl(y-y_1(x)\bigr)\bigl(y-y_2(x)\bigr)$ with given $y_1(x)$ and $y_2(x)$. For various types of stabilizing solutions, the number of points of extremum is examined.
			
            
            
            
          
        
      @article{TSP_2016_31_31_a5,
     author = {V. V. Palin and E. V. Radkevich},
     title = {Behavior of stabilizing solutions of the {Riccati} equation},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {110--133},
     publisher = {mathdoc},
     volume = {31},
     number = {31},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a5/}
}
                      
                      
                    TY - JOUR AU - V. V. Palin AU - E. V. Radkevich TI - Behavior of stabilizing solutions of the Riccati equation JO - Trudy Seminara im. I.G. Petrovskogo PY - 2016 SP - 110 EP - 133 VL - 31 IS - 31 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a5/ LA - ru ID - TSP_2016_31_31_a5 ER -
V. V. Palin; E. V. Radkevich. Behavior of stabilizing solutions of the Riccati equation. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 110-133. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a5/
