@article{TSP_2016_31_31_a5,
author = {V. V. Palin and E. V. Radkevich},
title = {Behavior of stabilizing solutions of the {Riccati} equation},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {110--133},
year = {2016},
volume = {31},
number = {31},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a5/}
}
V. V. Palin; E. V. Radkevich. Behavior of stabilizing solutions of the Riccati equation. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 110-133. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a5/
[1] Vasilev V. A., Romanovskii Yu. M., Yakhno V. G., Avtovolnovye protsessy, Nauka, M., 1987
[2] Laks P. D., Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevskii institut kompyuternykh issledovanii, M.–Izhevsk, 2010
[3] Evans L. K., Uravneniya s chastnymi proizvodnymi, Universitetskaya ser., 7, Tamara Rozhkovskaya, Novosibirsk, 1998
[4] Lukashev E. A., Palin V. V., Radkevich E. V., Yakovlev N. N., “Nonclassical regularization of the multicomponent Euler system”, J. Math. Sci., 196:3 (2014), 322–345 | DOI | MR | Zbl
[5] Filippov A. F., Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2004
[6] Pliss V. A., Nekotorye problemy teorii ustoichivosti v tselom, Izd-vo Leningrad. un-ta, L., 1958