Mixed Dirichlet--Steklov problem for the biharmonic equation in weighted spaces
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 87-109

Voir la notice de l'article provenant de la source Math-Net.Ru

We address the uniqueness of weak solutions of the mixed Dirichlet–Steklov problem for the biharmonic equation in the exterior of a compact set in the class of functions having a finite Dirichlet integral with the weight $|x|^a$. Depending on the parameter $a$, we establish some uniqueness theorems and obtain precise formulas for the dimension of the space of solutions.
@article{TSP_2016_31_31_a4,
     author = {H. A. Matevossian},
     title = {Mixed {Dirichlet--Steklov} problem for the biharmonic equation in weighted spaces},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {87--109},
     publisher = {mathdoc},
     volume = {31},
     number = {31},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a4/}
}
TY  - JOUR
AU  - H. A. Matevossian
TI  - Mixed Dirichlet--Steklov problem for the biharmonic equation in weighted spaces
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 87
EP  - 109
VL  - 31
IS  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a4/
LA  - ru
ID  - TSP_2016_31_31_a4
ER  - 
%0 Journal Article
%A H. A. Matevossian
%T Mixed Dirichlet--Steklov problem for the biharmonic equation in weighted spaces
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 87-109
%V 31
%N 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a4/
%G ru
%F TSP_2016_31_31_a4
H. A. Matevossian. Mixed Dirichlet--Steklov problem for the biharmonic equation in weighted spaces. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 87-109. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a4/