Mixed Dirichlet--Steklov problem for the biharmonic equation in weighted spaces
    
    
  
  
  
      
      
      
        
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 87-109
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We address the uniqueness of weak solutions of the mixed Dirichlet–Steklov problem for the biharmonic equation in the exterior of a compact set in the class of functions having a finite Dirichlet integral with the weight $|x|^a$. Depending on the parameter $a$, we establish some uniqueness theorems and obtain precise formulas for the dimension of the space of solutions.
			
            
            
            
          
        
      @article{TSP_2016_31_31_a4,
     author = {H. A. Matevossian},
     title = {Mixed {Dirichlet--Steklov} problem for the biharmonic equation in weighted spaces},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {87--109},
     publisher = {mathdoc},
     volume = {31},
     number = {31},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a4/}
}
                      
                      
                    TY - JOUR AU - H. A. Matevossian TI - Mixed Dirichlet--Steklov problem for the biharmonic equation in weighted spaces JO - Trudy Seminara im. I.G. Petrovskogo PY - 2016 SP - 87 EP - 109 VL - 31 IS - 31 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a4/ LA - ru ID - TSP_2016_31_31_a4 ER -
H. A. Matevossian. Mixed Dirichlet--Steklov problem for the biharmonic equation in weighted spaces. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 87-109. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a4/
