Maximum principle for nonlinear parabolic equations
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 63-86

Voir la notice de l'article provenant de la source Math-Net.Ru

A maximum principle is obtained for solutions of parabolic equations of the form $$ {\mathcal L} u - u_t = f (x, t, u, D u), $$ where $$ {\mathcal L} u = \sum_{i,j=1}^n a_{ij} (x, t, u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^n b_i (x, t, u) \frac{\partial u}{\partial x_i}. $$
@article{TSP_2016_31_31_a3,
     author = {A. A. Kon'kov},
     title = {Maximum principle for nonlinear parabolic equations},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {63--86},
     publisher = {mathdoc},
     volume = {31},
     number = {31},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - Maximum principle for nonlinear parabolic equations
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 63
EP  - 86
VL  - 31
IS  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/
LA  - ru
ID  - TSP_2016_31_31_a3
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T Maximum principle for nonlinear parabolic equations
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 63-86
%V 31
%N 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/
%G ru
%F TSP_2016_31_31_a3
A. A. Kon'kov. Maximum principle for nonlinear parabolic equations. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 63-86. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/