Maximum principle for nonlinear parabolic equations
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 63-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A maximum principle is obtained for solutions of parabolic equations of the form $$ {\mathcal L} u - u_t = f (x, t, u, D u), $$ where $$ {\mathcal L} u = \sum_{i,j=1}^n a_{ij} (x, t, u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^n b_i (x, t, u) \frac{\partial u}{\partial x_i}. $$
@article{TSP_2016_31_31_a3,
     author = {A. A. Kon'kov},
     title = {Maximum principle for nonlinear parabolic equations},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {63--86},
     year = {2016},
     volume = {31},
     number = {31},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - Maximum principle for nonlinear parabolic equations
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 63
EP  - 86
VL  - 31
IS  - 31
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/
LA  - ru
ID  - TSP_2016_31_31_a3
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T Maximum principle for nonlinear parabolic equations
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 63-86
%V 31
%N 31
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/
%G ru
%F TSP_2016_31_31_a3
A. A. Kon'kov. Maximum principle for nonlinear parabolic equations. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 63-86. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/

[1] Vasilev V. A., Romanovskii Yu. M., Yakhno V. G., Avtovolnovye protsessy, Nauka, M., 1987

[2] Ilin A. M., Kalashnikov A. S., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, UMN, 17:3 (1962), 3–146 | MR | Zbl

[3] Kondratev V. A., “Ob asimptoticheskom povedenii reshenii nelineinykh parabolicheskikh uravnenii vtorogo poryadka”, Tr. MIAN, 260, 2008, 180–192

[4] Kondratev V. A., Landis E. M., “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Itogi nauki i tekhn. Ser.: Sovrem. probl. mat. Fundam. napravleniya, 32, 1988, 99–215

[5] Konkov A. A., “O resheniyakh neavtonomnykh obyknovennykh differentsialnykh uravnenii”, Izv. RAN. Ser. matem., 65:2 (2001), 81–126 | DOI | MR | Zbl

[6] Konkov A. A., “O stabilizatsii reshenii nelineinogo uravneniya Fokkera–Planka”, Tr. seminara im. I. G. Petrovskogo, 29, 2013, 333–345

[7] Kon'kov A. A., “On the asymptotic behaviour of solutions of nonlinear parabolic equations”, Proc. Royal Soc. Edinburgh, 136 (2006), 365–384 | DOI | MR | Zbl

[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[9] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[10] Täsklind S., “Sur les classes quasianalytiques des solutions des équations aux dérivêes partielles du type parabolique”, Nova Acta Soc. Sci. Uppsal. Ser. 10, 4:3 (1936), 1–57

[11] Tikhonov A. N., “Teoremy edinstvennosti dlya uravneniya teploprovodnosti”, Matem. sb., 42:2 (1935), 199–216

[12] Holmgren E., “Sur les solutions quasianalytiques de l'équation de la chaleur”, Ark. Mat., 18 (1924), 1–9