Maximum principle for nonlinear parabolic equations
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 63-86
Voir la notice de l'article provenant de la source Math-Net.Ru
A maximum principle is obtained for solutions of parabolic equations of the form
$$ {\mathcal L} u - u_t = f (x, t, u, D u), $$ where $$ {\mathcal L} u = \sum_{i,j=1}^n a_{ij} (x, t, u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^n b_i (x, t, u) \frac{\partial u}{\partial x_i}. $$
@article{TSP_2016_31_31_a3,
author = {A. A. Kon'kov},
title = {Maximum principle for nonlinear parabolic equations},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {63--86},
publisher = {mathdoc},
volume = {31},
number = {31},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/}
}
A. A. Kon'kov. Maximum principle for nonlinear parabolic equations. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 63-86. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a3/