Integrable systems on the tangent bundle of a multi-dimensional sphere
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 257-323

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains a systematic exposition of some results on the equations of motion of a dynamically symmetric $n$-dimensional rigid body in a nonconservative field of forces. Similar bodies are considered in the dynamics of actual rigid bodies interacting with a resisting medium under the conditions of jet flow past the body with a nonconservative following force acting on the body in such a way that its characteristic point has a constant velocity, which means that the system has a nonintegrable servo-constraint.
@article{TSP_2016_31_31_a11,
     author = {M. V. Shamolin},
     title = {Integrable systems on the tangent bundle of a multi-dimensional sphere},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {257--323},
     publisher = {mathdoc},
     volume = {31},
     number = {31},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a11/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Integrable systems on the tangent bundle of a multi-dimensional sphere
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 257
EP  - 323
VL  - 31
IS  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a11/
LA  - ru
ID  - TSP_2016_31_31_a11
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Integrable systems on the tangent bundle of a multi-dimensional sphere
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 257-323
%V 31
%N 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a11/
%G ru
%F TSP_2016_31_31_a11
M. V. Shamolin. Integrable systems on the tangent bundle of a multi-dimensional sphere. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 257-323. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a11/