Integrable systems on the tangent bundle of a multi-dimensional sphere
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 257-323 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper contains a systematic exposition of some results on the equations of motion of a dynamically symmetric $n$-dimensional rigid body in a nonconservative field of forces. Similar bodies are considered in the dynamics of actual rigid bodies interacting with a resisting medium under the conditions of jet flow past the body with a nonconservative following force acting on the body in such a way that its characteristic point has a constant velocity, which means that the system has a nonintegrable servo-constraint.
@article{TSP_2016_31_31_a11,
     author = {M. V. Shamolin},
     title = {Integrable systems on the tangent bundle of a multi-dimensional sphere},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {257--323},
     year = {2016},
     volume = {31},
     number = {31},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a11/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Integrable systems on the tangent bundle of a multi-dimensional sphere
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 257
EP  - 323
VL  - 31
IS  - 31
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a11/
LA  - ru
ID  - TSP_2016_31_31_a11
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Integrable systems on the tangent bundle of a multi-dimensional sphere
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 257-323
%V 31
%N 31
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a11/
%G ru
%F TSP_2016_31_31_a11
M. V. Shamolin. Integrable systems on the tangent bundle of a multi-dimensional sphere. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 257-323. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a11/

[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250

[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[3] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985 | MR

[4] Bogoyavlenskii O. I., “Nekotorye integriruemye sluchai uravnenii Eilera”, DAN SSSR, 287:5 (1986), 1105–1108 | MR

[5] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR

[6] Burbaki N., Integrirovanie, Nauka, M., 1970 | MR

[7] Georgievskii D. V., Shamolin M. V., “Kinematika i geometriya mass tverdogo tela s nepodvizhnoi tochkoi v $\mathbf{R}^{n}$”, Dokl. RAN, 380:1 (2001), 47–50

[8] Georgievskii D. V., Shamolin M. V., “Obobschennye dinamicheskie uravneniya Eilera dlya tverdogo tela s nepodvizhnoi tochkoi v $\mathbf{R}^{n}$”, Dokl. RAN, 383:5 (2002), 635–637

[9] Georgievskii D. V., Shamolin M. V., “Pervye integraly uravnenii dvizheniya obobschennogo giroskopa v $\mathbf{R}^{n}$”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2003, no. 5, 37–41 | Zbl

[10] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950 | MR

[11] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy. I”, Itogi nauki i tekhn. Ser.: Sovrem. probl. mat. Fundam. napravleniya, 4, 1985, 179–284

[12] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, MGU, M., 1980 | MR

[13] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl

[14] Manin Yu. I., “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhn. Sovrem. probl. mat., 11, 1978, 5–112

[15] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR

[16] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1967 | MR

[17] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.–L., 1947

[18] Puankare A., “Novye metody nebesnoi mekhaniki”, Puankare A. Izbrannye trudy, v. 1, Nauka, M., 1971 ; т. 1, 1972 | MR

[19] Samsonov V. A., Shamolin M. V., “K zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 3, 51–54 | Zbl

[20] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR

[21] Steklov V. A., O dvizhenii tverdogo tela v zhidkosti, Kharkov, 1893

[22] Trofimov V. V., Fomenko A. T., “Dinamicheskie sistemy na orbitakh lineinykh predstavlenii i polnaya integriruemost nekotorykh gidrodinamicheskikh sistem”, Funkts. analiz i ego pril., 17:1 (1983), 31–39 | MR | Zbl

[23] Trofimov V. V., Shamolin M. V., “Dissipativnye sistemy s netrivialnymi obobschennymi klassami Arnolda–Maslova”, Tez. dokl. sem. po vekt. i tenz. an. im. P. K. Rashevskogo, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2000, no. 2, 62

[24] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR

[25] Chaplygin S. A., Izbrannye trudy, Nauka, M., 1976 | MR

[26] Shamolin M. V., “Zamknutye traektorii razlichnogo topologicheskogo tipa v zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1992, no. 2, 52–56 | MR | Zbl

[27] Shamolin M. V., “K zadache o dvizhenii tela v srede s soprotivleniem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1992, no. 1, 52–58 | MR | Zbl

[28] Shamolin M. V., “Klassifikatsiya fazovykh portretov v zadache o dvizhenii tela v soprotivlyayuscheisya srede pri nalichii lineinogo dempfiruyuschego momenta”, Prikl. matematika i mekhanika, 57:4 (1993), 40–49 | MR | Zbl

[29] Shamolin M. V., “Ob integriruemom sluchae v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1997, no. 2, 65–68

[30] Shamolin M. V., “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, UMN, 52:3 (1997), 177–178 | DOI | MR | Zbl

[31] Shamolin M. V., “Ob integriruemosti v transtsendentnykh funktsiyakh”, UMN, 53:3 (1998), 209–210 | DOI | MR | Zbl

[32] Shamolin M. V., “Semeistvo portretov s predelnymi tsiklami v ploskoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1998, no. 2, 29–37

[33] Shamolin M. V., “Nekotorye klassy chastnykh reshenii v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Izv. RAN. MTT, 1999, no. 2, 178–189 | MR

[34] Shamolin M. V., “Novye integriruemye po Yakobi sluchai v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 364:5 (1999), 627–629 | MR | Zbl

[35] Shamolin M. V., “O grubosti dissipativnykh sistem i otnositelnoi grubosti i negrubosti sistem s peremennoi dissipatsiei”, UMN, 54:5 (1999), 181–182 | DOI | MR | Zbl

[36] Shamolin M. V., “O predelnykh mnozhestvakh differentsialnykh uravnenii okolo singulyarnykh osobykh tochek”, UMN, 55:3 (2000), 187–188 | DOI | MR | Zbl

[37] Shamolin M. V., “Integriruemost po Yakobi v zadache o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede”, Dokl. RAN, 375:3 (2000), 343–346 | MR

[38] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke nabegayuschei sredy”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2001, no. 5, 22–28 | Zbl

[39] Shamolin M. V., “Ob integrirovanii nekotorykh klassov nekonservativnykh sistem”, UMN, 57:1 (2002), 169–170 | DOI | MR

[40] Shamolin M. V., “Sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete vraschatelnykh proizvodnykh momenta sil po uglovoi skorosti”, Dokl. RAN, 403:4 (2005), 482–485

[41] Shamolin M. V., “Sopostavlenie integriruemykh po Yakobi sluchaev ploskogo i prostranstvennogo dvizheniya tela v srede pri struinom obtekanii”, Prikl. matematika i mekhanika, 69:6 (2005), 1003–1010 | MR | Zbl

[42] Shamolin M. V., “Ob odnom integriruemom sluchae uravnenii dinamiki na $\mathrm{so}(4)\times\mathbf{R}^{4}$”, UMN, 60:6 (2005), 233–234 | DOI | MR | Zbl

[43] Shamolin M. V., “Polnaya integriruemost uravnenii dvizheniya prostranstvennogo mayatnika v potoke sredy pri uchete vraschatelnykh proizvodnykh momenta sily ee vozdeistviya”, Izv. RAN. MTT, 2007, no. 3, 187–192 | MR

[44] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike na kasatelnom rassloenii dvumernoi sfery”, UMN, 62:5 (2007), 169–170 | DOI | MR | Zbl

[45] Shamolin M. V., Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, M., 2007

[46] Shamolin M. V., “Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniya”, Fundament. i prikl. matem., 14:3 (2008), 3–237

[47] Shamolin M. V., “Novye integriruemye sluchai v dinamike tela, vzaimodeistvuyuschego so sredoi, pri uchete zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Prikl. matematika i mekhanika, 72:2 (2008), 273–287 | MR | Zbl

[48] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov dinamicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 3, 43–49 | Zbl

[49] Shamolin M. V., “Trekhparametricheskoe semeistvo fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Dokl. RAN, 418:1 (2008), 46–51 | MR | Zbl

[50] Shamolin M. V., “Klassifikatsiya sluchaev polnoi integriruemosti v dinamike simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Sovrem. mat. i ee pril., 65 (2009), 132–142

[51] Shamolin M. V., “Novye sluchai polnoi integriruemosti v dinamike dinamicheski simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN, 425:3 (2009), 338–342 | MR | Zbl

[52] Shamolin M. V., “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov nekonservativnykh dinamicheskikh sistem”, Sovrem. mat. i ee pril., 62 (2009), 131–171

[53] Shamolin M. V., “Novye sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela”, Dokl. RAN, 431:3 (2010), 339–343 | MR | Zbl

[54] Shamolin M. V., “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, UMN, 65:1 (2010), 189–190 | DOI | MR | Zbl

[55] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Dokl. RAN, 437:2 (2011), 190–193 | MR

[56] Shamolin M. V., “Novyi sluchai polnoi integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Vestn. SamGU. Estestvennonauch. ser., 2011, no. 5 (86), 187–189

[57] Shamolin M. V., “Polnyi spisok pervykh integralov v zadache o dvizhenii chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN, 440:2 (2011), 187–190 | MR

[58] Shamolin M. V., “Nekotorye voprosy kachestvennoi teorii v dinamike sistem s peremennoi dissipatsiei”, Sovrem. mat. i ee pril., 78 (2012), 138–147

[59] Shamolin M. V., “Novyi sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole pri nalichii lineinogo dempfirovaniya”, Dokl. RAN, 444:5 (2012), 506–509 | MR

[60] Shamolin M. V., “Novyi sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, Dokl. RAN, 442:4 (2012), 479–481 | MR

[61] Shamolin M. V., “Polnyi spisok pervykh integralov dinamicheskikh uravnenii dvizheniya tverdogo tela v soprotivlyayuscheisya srede pri uchete lineinogo dempfirovaniya”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2012, no. 4, 44–47 | Zbl

[62] Shamolin M. V., “Sopostavlenie sluchaev polnoi integriruemosti v dinamike dvumernogo, trekhmernogo i chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Sovrem. mat. i ee pril., 76 (2012), 84–99 | Zbl