Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 22-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a simplest elliptic pseudodifferential equation in a multi-dimensional cone (multi-dimensional angle) and describe all possible structures of its solutions related to the wave factorization of the elliptic symbol. Depending on the index of wave factorization, we consider various statements of well-posed boundary-value problems. The existence of solutions is studied in Sobolev–Slobodetskii spaces.
@article{TSP_2016_31_31_a1,
     author = {V. B. Vasilyev},
     title = {Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {22--37},
     year = {2016},
     volume = {31},
     number = {31},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a1/}
}
TY  - JOUR
AU  - V. B. Vasilyev
TI  - Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 22
EP  - 37
VL  - 31
IS  - 31
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a1/
LA  - ru
ID  - TSP_2016_31_31_a1
ER  - 
%0 Journal Article
%A V. B. Vasilyev
%T Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 22-37
%V 31
%N 31
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a1/
%G ru
%F TSP_2016_31_31_a1
V. B. Vasilyev. Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 22-37. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a1/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[3] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR

[4] Vasilev V. B., Multiplikatory integralov Fure, psevdodifferentsialnye uravneniya, volnovaya faktorizatsiya, kraevye zadachi, KomKniga, M., 2010

[5] Vasil'ev V. B., Wave factorization of elliptic symbols: theory and applications. Introduction to boundary value problems in non-smooth domains, Kluwer Academic, Dordrecht, 2000 | MR | Zbl

[6] Vasilev V. B., “Psevdodifferentsialnye uravneniya v konusakh s tochkami sopryazheniya na granitse”, Differents. uravneniya, 51:9 (2015), 1123–1135 | DOI | Zbl

[7] Vasilyev V. B., “On the Dirichlet and Neumann problems in multi-dimensional cone”, Math. Bohem., 139:2 (2014), 333–340 | MR | Zbl

[8] Vasilyev V. B., Potentials for elliptic boundary value problems in cones, arXiv: 1409.4492 | MR

[9] Vasilyev V. B., “On certain elliptic problems for pseudo-differential equations in a polyhedral cone”, Adv. Dyn. Syst. Appl., 9:2 (2014), 227–237 | MR

[10] Vasilev V. B., “Psevdodifferentsialnye uravneniya, singulyarnye integraly i raspredeleniya”, Prikl. matematika i matem. fizika, 1:1 (2015), 3–16

[11] Vasilyev V. B., “New constructions in the theory of elliptic boundary value problems”, Integral Methods in Science and Engineering, Proc. IMSE Conference (Karlsruhe, Germany, 2014), eds. C. Constanda, A. Kirsch, Birkhäuser, Basel, 2015, 573–584

[12] Vasilyev V. B., “Potential like operators in the theory of boundary value problems in non-smooth domains”, Azerb. J. Math., 2:2 (2012), 117–128 | MR | Zbl

[13] Vasilev V. B., “O nekotorykh novykh kraevykh zadachakh v negladkikh oblastyakh”, Itogi nauki i tekhn. Ser.: Sovrem. mat. i ee pril., 67, 2010, 101–106

[14] Vasilev V. B., “Regulyarizatsiya mnogomernykh singulyarnykh integralnykh uravnenii v negladkikh oblastyakh”, Tr. MMO, 59, 1998, 73–105 | Zbl

[15] Vasilev V. B., “O nekotorykh klassakh psevdodifferentsialnykh uravnenii v konusakh”, Dokl. PAN, 355:1 (1997), 14–17 | MR | Zbl

[16] Bokhner S., Martin U. T., Funktsii mnogikh kompleksnykh peremennykh, Izd. inostr. lit., M., 1951

[17] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[18] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR