Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 22-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a simplest elliptic pseudodifferential equation in a multi-dimensional cone (multi-dimensional angle) and describe all possible structures of its solutions related to the wave factorization of the elliptic symbol. Depending on the index of wave factorization, we consider various statements of well-posed boundary-value problems. The existence of solutions is studied in Sobolev–Slobodetskii spaces.
@article{TSP_2016_31_31_a1,
     author = {V. B. Vasilyev},
     title = {Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains},
     journal = {Trudy Seminara im. I.G. Petrovskogo},
     pages = {22--37},
     publisher = {mathdoc},
     volume = {31},
     number = {31},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a1/}
}
TY  - JOUR
AU  - V. B. Vasilyev
TI  - Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains
JO  - Trudy Seminara im. I.G. Petrovskogo
PY  - 2016
SP  - 22
EP  - 37
VL  - 31
IS  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a1/
LA  - ru
ID  - TSP_2016_31_31_a1
ER  - 
%0 Journal Article
%A V. B. Vasilyev
%T Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains
%J Trudy Seminara im. I.G. Petrovskogo
%D 2016
%P 22-37
%V 31
%N 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a1/
%G ru
%F TSP_2016_31_31_a1
V. B. Vasilyev. Model elliptic boundary-value problems for pseudodifferential operators in canonical nonsmooth domains. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 22-37. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a1/